2023年广西柳州市中考数学模拟练习卷一(含答案)
展开
这是一份2023年广西柳州市中考数学模拟练习卷一(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西柳州市中考数学模拟练习卷一 、选择题(本大题共12小题,每小题3分,共36分)1.-5的绝对值是( )A.5 B.-5 C. D.±52.下列图形是中心对称图形的是( )A. B. C. D.3.如图所示,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ).A. B. C. D.4.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A.4.995×1011 B.49.95×1010 C.0.4995×1011 D.4.995×10105.下列说法正确的是( )A.为了解全国中小学生的心理健康状况,应采用普查.B.确定事件一定会发生.C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98.D.数据6、5、8、7、2的中位数是6.6.下列运算正确的是( )A.a3•a2=a6 B.a12÷a3=a4 C.a3+b3=(a+b)3 D.(a3)2=a67.已知反比例函数y=,下列结论中不正确的是( )A.图象经过点(-1,-1)B.图象在第一、三象限C.当x>1时,0<y<1D.当x<0时,y随着x的增大而增大 8.如图,⊙O是△ABC外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O半径为( )A.4 B.6 C.8 D.129.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,则sin∠CAD=( ) A. B. C. D.10.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是( )A.800(1+a%)2=578 B.800(1-a%)2=578 C.800(1-2a%)=578 D.800(1-a2%)=57811.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x的增大而增大.其中结论正确的个数是( )A.4个 B.3个 C.2个 D.1个12.有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2024的值为( )A.2 B.- 1 C. D.2018 二 、填空题(本大题共6小题,每小题3分,共18分)13.函数的自变量x的取值范围是 14.把多项式a3﹣6a2b+9ab2因式分解的结果是 .15.如果3x2y3与xm+1yn - 1的和仍是单项式,则(n - 3m)2022的值为________.16.如图,将矩形ABCD沿DE折叠,使A点落在BC上F处,若∠EFB=60°,则∠AED=_________.17.如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转,使点B的对应点D恰好落在弧AC上,点C的对应点为E,则图中阴影部分的面积为 .18.如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=3,则点C的坐标为________.三 、解答题(本大题共8小题,共66分)19.计算:(﹣1)﹣1﹣+(﹣)0+|1﹣3| 20.先化简,再求值:(+)÷,其中a满足a2-4a-1=0. 21.如图,已知△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形. 22.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题: (1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率. 23.如图,在正方形ABCD中,E在BC上,以AE边作等腰Rt△AEF,∠AEF=90°,AE=EF,FG⊥BC于G.(1)如图1,求证:GF=CG;(2)如图2,AF交CD于点M,EF交CD于点N,当BE=3,DM=2时,求线段NC的长. 24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨? 25.如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.求证:AD•CE=DE•DF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°. 26.如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为 ;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是 ;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点:①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?
答案1.A.2.D3.B.4.D.5.D6.D7.D8.A.9.B10.B11.C12.C.13.答案为:x>﹣3;14.答案为:a(a﹣3b)2. 15.答案为:1;16.答案为:75°.17.答案为:+.18.答案为:(6,4).19.解:原式=﹣1.20.解:原式=,∵a2-4a-1=0,∴(a-2)2=5,∴原式=[21.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形. 22.解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示: 共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.23.证明:(1)四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEG=90°,∴∠BAE=∠FEG,∵FG⊥BC,∴∠EGF=90°,在△ABE和△EGF中,∴△ABE≌△EGF,∴GF=BE,EG=AB,∵AB=BC,∴BC=EG,∴BE=CG,∴GF=CG,(2)如图2,过F作FH⊥CD,则∠FHC=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠FHC=∠BCD,∴FH∥BC∥AD,∴∠HFN=∠GEF,由(1)知,∠GEF=∠BAE,∴∠BAE=∠HFN,∵∠FHN=∠ABE=90°,∴△ABE∽△FHN,设HN=x,则HM=x,∵∠HCG=∠CGF=∠CHF=90°,∴四边形CGFH是矩形,∵CG=FG,∴矩形CGFH是正方形,∴HF=CH=CG=BE=3,∴CN=3﹣x,∴BC=CD=CH+HM+DM=3+x+2=5+x,∴EC=BC﹣BE=5+x﹣3=x+2,∵∠CNE=∠HNF,∠ECN=∠FHN=90°,∴△ECN∽△FHN,∴x=或x=﹣9(舍),∴NC=3﹣x=.24.解:(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20).(2)∵小颖家四月份、五月份分别交水费45.6元、38元,
∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.
∴45.6=2.8x1-16,38=2x2.∴x1=22,x2=19.
∵22-19=3,∴小颖家五月份比四月份节约用水3吨. 25.(1)证明:连接AF,∵DF是⊙O的直径,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直线CD是⊙O的切线∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)选取①完成证明证明:∵直线CD是⊙O的切线,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD•CE=DE•DF.26.解:(1)x=﹣1,顶点坐标M为(﹣1,﹣4m+1),由图象得:当﹣1<x<3时,二次函数L1,L2的y值同时随着x的增大而增大.故答案为:(﹣1,﹣4m+1);﹣1<x<3(2)结论:四边形AMDN是矩形.由二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)解析式可得:A点坐标为(,0),D点坐标为(,0),顶点M坐标为(﹣1,﹣4m+1),顶点N坐标为(3,4m﹣1),∴AD的中点为(1,0),MN的中点为(1,0),∴AD与MN互相平分,∴四边形AMDN是平行四边形,又∵AD=MN,∴▱AMDN是矩形.(3)①∵二次函数L1:y=mx2+2mx﹣3m+1=m(x+3)(x﹣1)+1,故当x=﹣3或x=1时y=1,即二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,∵二次函数L2:y=﹣m(x﹣3)2+4m﹣1=﹣m(x﹣1)(x﹣5)﹣1,故当x=1或x=5时y=﹣1,即二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,②∵二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,如图:四个定点分别为E(﹣3,1)、F(1,1),H(1,﹣1)、G(5,﹣1),则组成四边形EFGH为平行四边形,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得:42=22+(4﹣x)2.解得:x=4±2,抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2向左平移4+2或4﹣2.
相关试卷
这是一份2023年广西壮族自治区柳州市中考数学模拟试卷(含答案),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广西北海市中考数学模拟练习卷一(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广西柳州市三江县民族初级中学中考数学模拟试卷(含答案),共9页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。