所属成套资源:初中数学竞赛中考培优几何模型专题突破经典讲义附答案
中考培优竞赛专题经典讲义 第23讲 轨迹问题之直线轨迹
展开
这是一份中考培优竞赛专题经典讲义 第23讲 轨迹问题之直线轨迹,共16页。
第23讲 轨迹问题之直线轨迹点的轨迹问题近年来在考试中经常出现,解决这类问题,首先得要了解,哪些条件会产生这类轨迹?模型讲解模型一:轨迹为直线动点P到定直线距离保持不变,点P的轨迹为一直线点P与定线段一端点连接后,与该线段所夹角保持不变,点P的轨迹为一直线 【例题讲解】例题1、如图,已知A=10,点C、D在线段AB上,且AC=DB=2,P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是 . 【解析】延长AE、BF,相交于点H,连接HP易得△HAB为等边三角形,四边形HEPF为平行四边形∵平行四边形的对角线互相平分,且G为FE中点∴G在HP上,且G为HP的中点∴当P从点C运动到点D时,G始终为HP的中点∴G到AB的距离始终为点H到AB的距离的半∴点G的轨迹为直线∴MN即为G点运动的路径长 例题2、如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是 . 【解析】连接AN易证△ANB≌△CMB∴∠BAN=∠BCM=30°∵AB边为定边∴N在与AB夹角为30°的直线上运动∴当HN⊥AN时,HN最短(即为图中N′点)∵∠BAN=30°,AH=AB=a∴HN′=AH=a例题3、在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m-1,-m-)(其中m为实数),则PM的最小值为 .【解析】∵点M的坐标为(m-1,-m-)∴设x=m-1,y=-m-……①∴m=x+1……②将②式代入①式化简得y=-x-3∴点M在函数y=-x-3上运动,轨迹为直线∴当PM⊥AB时,PM最小根据△PMB∽△AOB,即可得PM=4∴PM的最小值为4【巩固训练】1、等边三角形ABC中,BC=6,D、E是边BC上两点,且BD=CE=1,点P是线段DE上的一个动点,过点P分别作AC、AB的平行线交AB、AC于点M、N,连接MN、AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过的区域面积为 . 2、如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BROP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为 . 3、如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为 . 4、在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧做等边△APQ,则Q点运动的路径长为 cm. 5、如图,在平面直角坐标系中,A(1,4),B(3,2),C(m,-4m+20),若OC恰好平分四边形OACB的面积,则C点坐标为 . 6、如图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线Ox上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是 . 图1 图2 图3 7、在直角梯形ABCD中,AB∥CD,BC⊥CD,AB=3,CD=4,在BC上取点P(P与B、C不重合),连接PA延长至E,使PA=2AE,连接PD并延长到F,使PD=4FD,以PE、PF为边作平行四边形,另一个顶点为G,则PG长度的最小值为 .8、如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长是 . 9、如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P从O点出发沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP,CA,过点P作PD⊥OB于点D.(1)填空:PD的长为 (用含t的代数式表示);(2)求点C的坐标(用含t的代数式表示);(3)在点P从O向A运动的过程中,求点C运动路线的长.
10、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB= ,PD= .(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长. 图1 图2
参考答案1.【解答】解:∵PM∥AC,PN∥AB,∴四边形AMPN是平行四边形,∵MN与AP相交于点G,∴G是AP的中点,∴如图点G的运动路线是△APP′的中位线,∵BC=6,BD=CE=1,∴GG′==2,∵BC=6,∴△BGG′的底边GG′上的高=×(6×)=,∴线段BG扫过的区域面积=×2×=.故答案为:. 2.【解答】解:如图,设KH的中点为S,连接PE,PF,SE,SF,PS,∵E为MN的中点,S为KH的中点,∴A,E,S共线,F为QR的中点,S为KH的中点,∴B、F、S共线,由△AME∽△PQF,得∠SAP=∠FPB,∴ES∥PF,△PNE∽△BRF,得∠EPA=∠FBP,∴PE∥FS,则四边形PESF为平行四边形,则G为PS的中点,∴G的轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长.故答案为:2. 3.【解答】解:如图所示:过点M作GH⊥AD.∵AD∥CB,GH⊥AD,∴GH⊥BC.在△EGM和△FHM中,∴△EGM≌△FHM.∴MG=MH.∴点M的轨迹是一条平行于BC的线段.当点P与A重合时,BF1=AE=2,当点P与点B重合时,∠F2+∠EBF1=90°,∠BEF1+∠EBF1=90°,∴∠F2=∠EBF1.∵∠EF1B=∠EF1F2,∴△EF1B∽△∠EF1F2.∴,即:,∴F1F2=18,∵M1M2是△EF1F2的中位线,∴M1M2=F1F2=9.故答案为:9. 4.【解答】解:如图,Q点运动的路径为QQ′的长,∵△ACQ和△ABQ′是等边三角形,∴∠CAQ=∠BAQ′=60°,AQ=AC=AQ′=2cm,∵∠BAC=90°,∴∠QAQ′=90°,由勾股定理得:QQ′===2,∴Q点运动的路径为2cm;故答案为:2. 5.【解答】解:AB的中点D的坐标是:(,),即(2,3),设直线OD的解析式是y=kx,则2k=3,解得:k=,则直线的解析式是:y=x,根据题意得:,解得:,则C的坐标是:(,).故答案是:(,). 6.【解答】解:如图3,连接OG.∵∠AOB是直角,G为AB中点,∴GO=AB=半径,∴原点O始终在⊙G上.∵∠ACB=90°,AB=6,AC=2,∴BC=4.连接OC.则∠AOC=∠ABC,∴tan∠AOC==,∴点C在与x轴夹角为∠AOC的射线上运动.如图4,C1C2=OC2﹣OC1=6﹣2=4;如图5,C2C3=OC2﹣OC3=6﹣4;∴总路径为:C1C2+C2C3=4+6﹣4=10﹣4.故选:D. 7.分析与解答 8.【解答】解:由题意可知,OM=,点N在直线y=﹣x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=OM=×=.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(终点)时,点B的位置为Bn,连接B0Bn∵AO⊥AB0,AN⊥ABn,∴∠OAC=∠B0ABn,又∵AB0=AO•tan30°,ABn=AN•tan30°,∴AB0:AO=ABn:AN=tan30°(此处也可用30°角的Rt△三边长的关系来求得),∴△AB0Bn∽△AON,且相似比为tan30°,∴B0Bn=ON•tan30°=×=.现在来证明线段B0Bn就是点B运动的路径(或轨迹).如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0Bi∵AO⊥AB0,AP⊥ABi,∴∠OAP=∠B0ABi,又∵AB0=AO•tan30°,ABi=AP•tan30°,∴AB0:AO=ABi:AP,∴△AB0Bi∽△AOP,∴∠AB0Bi=∠AOP.又∵△AB0Bn∽△AON,∴∠AB0Bn=∠AOP,∴∠AB0Bi=∠AB0Bn,∴点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为.故选:C. 9.【解答】解:(1)∵△AOB是等边三角形,∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.∵PD⊥OB,∴∠PDO=90°,∴∠OPD=30°,∴OD=OP.∵OP=t,∴OD=t,在Rt△OPD中,由勾股定理,得PD=故答案为: (2)如图(1)过C作CE⊥OA于E,∴∠PEC=90°,∵OD=t,∴BD=4﹣t.∵线段BP的中点绕点P按顺时针方向旋转60°得点C,∴∠BPC=60°.∵∠OPD=30°,∴∠BPD+∠CPE=90°.∴∠DBP=∠CPE∴△PCE∽△BPD∴,∴,,∴CE=,PE=,OE=,∴C(,). (3)如图(3)当∠PCA=90度时,作CF⊥PA,∴△PCF∽△ACF,∴,∴CF2=PF•AF,∵PF=2﹣t,AF=4﹣OF=2﹣tCF=,∴()2=(2﹣t)(2﹣t),求得t=2,这时P是OA的中点.如图(2)当∠CAP=90°时,C的横坐标就是4,∴2+t=4∴t= (4)设C(x,y),∴x=2+t,y=,∴y=x﹣,∴C点的运动痕迹是一条线段(0≤t≤4).当t=0时,C1(2,0),当t=4时,C2(5,),∴由两点间的距离公式得:C1C2=2.故答案为:2. 10.【解答】解:(1)根据题意得:CQ=2t,PA=t,∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA==,∴PD=t.故答案为:(1)8﹣2t,t. (2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形. (3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.
相关试卷
这是一份中考培优竞赛专题经典讲义 第25讲 轨迹问题之其他轨迹,共4页。
这是一份中考培优竞赛专题经典讲义 第24讲 轨迹问题之圆弧轨迹,共7页。
这是一份中考培优竞赛专题经典讲义 第11讲 最值问题之构造与转化,共9页。