|课件下载
搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第10章 §10.3 二项式定理
    立即下载
    加入资料篮
    新高考数学一轮复习课件  第10章 §10.3 二项式定理01
    新高考数学一轮复习课件  第10章 §10.3 二项式定理02
    新高考数学一轮复习课件  第10章 §10.3 二项式定理03
    新高考数学一轮复习课件  第10章 §10.3 二项式定理04
    新高考数学一轮复习课件  第10章 §10.3 二项式定理05
    新高考数学一轮复习课件  第10章 §10.3 二项式定理06
    新高考数学一轮复习课件  第10章 §10.3 二项式定理07
    新高考数学一轮复习课件  第10章 §10.3 二项式定理08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第10章 §10.3 二项式定理

    展开
    这是一份新高考数学一轮复习课件 第10章 §10.3 二项式定理,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    §10.3 二项式定理
    能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.
    LUOSHIZHUGANZHISHI
    2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数_____.(2)增减性与最大值:当n是偶数时,中间的一项___取得最大值;当n是奇数时,中间的两项____与_____相等,且同时取得最大值.(3)各二项式系数的和:(a+b)n的展开式的各二项式系数的和等于__.
    2.二项展开式的三个重要特征(1)字母a的指数按降幂排列由n到0.(2)字母b的指数按升幂排列由0到n.(3)每一项字母a的指数与字母b的指数的和等于n.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1) 是(a+b)n的展开式的第k项.(  )(2)(a+b)n的展开式中某一项的二项式系数与a,b无关.(  )(3)二项展开式中,系数最大的项为中间一项或中间两项.(  )(4)(a+b)n的展开式中,某项的系数与该项的二项式系数不同.(  )
    2.(多选)已知(a+b)n的展开式中第5项的二项式系数最大,则n的值可以为A.7 B.8C.9 D.10
    ∴n=7或n=8或n=9.
    3.在(1-2x)10的展开式中,各项系数的和是__.
    令x=1可得各项系数的和为(1-2)10=1.
    TANJIUHEXINTIXING
    例1  (1)(2022·烟台模拟)(1- )8展开式中x项的系数为A.28 B.-28C.112 D.-112
    命题点1 形如(a+b)n(n∈N*)的展开式的特定项
    (2)(2022·德州模拟)若n∈Z,且3≤n≤6,则 的展开式中的常数项为__.
    因为3≤n≤6,令n-4k=0,解得n=4,k=1,
    命题点2 形如(a+b)m(c+d)n (m,n∈N*)的展开式问题
    例2 (1)(2022·泰安模拟)(x3-2) 的展开式中x6的系数为A.6 B.10 C.13 D.15
    Tk+1= ,
    (1-2x)4的展开式的通项公式为
    所以2×(1-2x)4展开式中x3项的系数是
    (1-x)n的二项展开式中第k+1项为
    2.(2022·烟台模拟)在(x2+2x+y)5的展开式中,x5y2的系数为A.60 D.12
    由(x2+2x+y)5=[(x2+2x)+y]5,由通项公式可得Tk+1= (x2+2x)5-kyk,∵要求x5y2的系数,故k=2,此时(x2+2x)3=x3·(x+2)3,其对应x5的系数为 21=6.∴x5y2的系数为 ×6=60.
    (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.
    跟踪训练1 (1)(2021·北京) 的展开式中常数项为____.
    (1+2x)5展开式的通项公式为
    的展开式中,含x3的项的系数为80-32=48.
    例3 (1)(多选)(2022·十堰调研)在 的展开式中,各项系数和与二项式系数和之和为128,则A.二项式系数和为64 B.各项系数和为64C.常数项为-135 D.常数项为135
    二项式系数与项的系数的问题
    命题点1 二项式系数和与系数和
    在 的展开式中,各项系数和与二项式系数和之和为128,令x=1,得各项系数和为2n,二项式系数和为2n,则2×2n=128,得n=6,即二项式系数和为64,各项系数和也为64,故A,B正确; 展开式的通项为
    = ,
    (2)已知多项式(1-2x)+(1+x+x2)3=a0+a1x+a2x2+…+a6x6,则a1=___,a2+a3+a4+a5+a6=___.
    根据题意,令x=1,则(1-2)+(1+1+1)3=a0+a1+a2+…+a6=26,令x=0,a0=1+1=2,由于(1-2x)+(1+x+x2)3=a0+a1x+a2x2+…+a6x6,a1为展开式中x项的系数,考虑一次项系数a1=-2+ ×12=1,所以a2+a3+a4+a5+a6=26-1-2=23.
    命题点2 系数与二项式系数的最值问题
    例4  的展开式中二项式系数最大的项为第__项,系数最大的项为________.
    因为 的展开式中二项式系数的最大值为 ,所以二项式系数最大的项为第4项.因为 的展开式的通项为所以展开式中系数最大的项为奇数项.展开式中第1,3,5,7项的系数分别为 ,即1,60,240,64,所以展开式中系数最大的项为240x-8y2.
    A正确;当x=1时,有a0+a1+a2+…+a2 022=1,当x=-1时,有a0-a1+a2-a3+…-a2 021+a2 022=32 022,选项B,由上可得a1+a3+a5+…+a2 021= ,B错误;
    选项C,由上可得a0+a2+a4+…+a2 022= ,C正确;选项D,令x= 可得又a0=1, D正确.
    2.(多选)已知(x-3)8=a0+a1(x-2)+a2(x-2)2+…+a8(x-2)8,则下列结论正确的有A.a0=1B.a6=-+a2+a4+a6+a8=128
    对于A,取x=2,得a0=1,A正确;对于B,(x-3)8=[-1+(x-2)]8展开式中第7项为 (-1)2(x-2)6=28(x-2)6,即a6=28,B不正确;对于C,取x= ,得
    对于D,取x=3,得a0+a1+a2+a3+…+a7+a8=0,取x=1,得a0-a1+a2-a3+…-a7+a8=(-2)8=256,两式相加得2(a0+a2+a4+a6+a8)=256,即a0+a2+a4+a6+a8=128,D正确.
    赋值法的应用一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为 [g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为 [g(1)-g(-1)].
    跟踪训练2 (1)已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|等于A.1 D.122
    令x=1,得a5+a4+a3+a2+a1+a0=1, ①令x=-1,得-a5+a4-a3+a2-a1+a0=-243, ②①+②,得2(a4+a2+a0)=-242,即a4+a2+a0=-121.①-②,得2(a5+a3+a1)=244,即a5+a3+a1=122.所以|a0|+|a1|+…+|a5|=122+121=243.
    (2)(多选)(2022·济南模拟)在 的展开式中,下列说法正确的是A.常数项为160B.第4项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64
    展开式的通项为 ,由2k-6=0,得k=3,所以常数项为23(-1)3 =-160,A错误;展开式共有7项,所以第4项二项式系数最大,B正确;第3项的系数最大,C正确;令x=1,得 =1,所有项的系数和为1,D错误.
    例5 (1)设a∈Z,且0≤a≤13,若512 021+a能被13整除,则a等于A.0 B.1 C.11 D.12
    因为a∈Z,且0≤a≤13,所以512 021+a=(52-1)2 021+a,
    因为512 021+a能被13整除,结合选项,所以- +a=-1+a能被13整除,所以a=1.
    (2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是
    =(9-1)9+n-1
    ∵n≥3,∴S能被9整除的正数n的最小值是n-2=9,∴n=11.
    只考虑k为偶数的情况,
    可知系数最大的项为第7项.
    二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,(1+x)n≈1+nx.
    跟踪训练3 (1)设n为奇数,那么11n+ -1除以13的余数是A.-3 B.2C.10 D.11
    =12n-2=(13-1)n-2
    (2)0.996的计算结果精确到0.001的近似值是
    =1-0.06+0.001 5-0.000 02+…+0.016≈0.941.
    KESHIJINGLIAN
    1.(2022·济南模拟) 的展开式中,含x4项的系数为A.4 D.15
    令6-2k=4,解得k=1,因此,展开式中含x4项的系数为 =6.
    展开式中,只有第7项的二项式系数最大,可得展开式有13项,所以n=12,展开式的通项为
    = ,若为常数项,则12- k=0,
    所以k=9 ,得常数项为
    3.(2022·邯郸模拟)(x2-x)(1+x)6的展开式中x3项的系数为A.-9 B.9C.-21 D.21
    4.(2022·芜湖质检)已知(x-m)(x+2)5=a0+a1x+a2x2+…+a6x6,其中m为常数,若a4=30,则a0等于A.-32 B.32C.64 D.-64
    由多项式乘法知,第一个因式中x乘以(x+2)5展开式中的x3项得一个x4项,第一个因式中的常数-m乘以(x+2)5展开式中的x4项得另一个x4项,两项合并同类项得系数即为a4,所以a4= ×2=30,解得m=1,再令x=0,得a0=-25=-32.
    5.(2022·大连模拟)(ax-y)(x+y)4的展开式中x3y2的系数为-2,则实数a的值为
    化简得(ax-y)(x+y)4=ax·(x+y)4-y·(x+y)4,∵(x+y)4的展开式的通项公式
    6.已知在(2x-1)n的二项展开式中,奇次项系数的和比偶次项系数的和小38,则 的值为A.28 B.28-1C.27 D.27-1
    设(2x-1)n=a0+a1x+a2x2+…+anxn,且奇次项的系数和为A,偶次项的系数和为B.则A=a1+a3+a5+…,B=a0+a2+a4+a6+….由已知得,B-A=38,令x=-1,得a0-a1+a2-a3+…+an(-1)n=(-3)n,
    即(a0+a2+a4+a6+…)-(a1+a3+a5+a7+…)=(-3)n,即B-A=(-3)n,∴(-3)n=38=(-3)8,∴n=8,
    7.(多选)(2022·邯郸模拟)已知 的展开式中,二项式系数之和为64,下列说法正确的是A.2,n,10成等差数列B.各项系数之和为64C.展开式中二项式系数最大的项是第3项D.展开式中第5项为常数项
    得n=6,得2,6,10成等差数列,A正确;
    A错误;对于B,令x=1,
    令x=-1,则a0-a1+a2-…+a6=(2+ )6,∴(a0+a2+a4+a6)2-(a1+a3+a5)2=(a0+a1+a2+…+a6)(a0-a1+a2-…+a6)=[(2- )×(2+ )]6=1,B正确;对于C,令x=0,得a0=26,∴a1+a2+…+a6=(2- )6-26,C错误;
    对于D,∵a0,a2,a4,a6为正数,a1,a3,a5为负数,又a0=26=64,a2= ×24×3=720,a4= ×22×32=540,a6=33=27,∴展开式中系数最大的为a2,D正确.
    令18-4k=6,解得k=3,所以x6的系数是23 =160.
    10.(2022·济宁模拟)已知 的展开式中各项的二项式系数的和为128,则这个展开式中x3项的系数是____.
    依题意,2n=128,解得n=7,
    由7-2k=3得k=2,所以所求展开式中x3项的系数是(-2)2 =84.
    所以n+1=7,可得n=6,
    Tk+1= = ,
    12.(2021·浙江)已知多项式(x-1)3+(x+1)4=x4+a1x3+a2x2+a3x+a4,则a1=__,a2+a3+a4=___.
    所以a2+a3+a4=3+7+0=10.
    13.已知n为正整数,若1.1510∈[n,n+1),则n的值为A.2 B.3 C.4 D.5
    所以2<1.155<2.1,因此4<1.1510<4.41,又n为正整数,1.1510∈[n,n+1),所以n=4.
    14.(2022·浙江Z20名校联盟联考)设(x-1)(2+x)3=a0+a1x+a2x2+a3x3+a4x4,则a1=____,2a2+3a3+4a4=___.
    因为 =-4x,所以a1=-4,对所给等式,两边对x求导,可得(2+x)3+3(x-1)(2+x)2=a1+2a2x+3a3x2+4a4x3,令x=1,得27=a1+2a2+3a3+4a4,所以2a2+3a3+4a4=31.
    由an+1=SnSn+1=Sn+1-Sn,
    =2np(q+p)2n-1=2np≠2npq(除非p=0),B错;设f(m)是f(k)中最大项,
    相关课件

    新高考数学一轮复习讲练测课件第10章§10.3二项式定理 (含解析): 这是一份新高考数学一轮复习讲练测课件第10章§10.3二项式定理 (含解析),共59页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,二项式定理,k+1,-28,所以a=1,120x4等内容,欢迎下载使用。

    2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT: 这是一份2024年高考数学一轮复习(新高考版) 第10章 §10.3 二项式定理课件PPT,共59页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,二项式定理,k+1,-28,所以a=1,120x4等内容,欢迎下载使用。

    高考数学一轮复习第10章第2节二项式定理课件: 这是一份高考数学一轮复习第10章第2节二项式定理课件,共60页。PPT课件主要包含了k+1,××√等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第10章 §10.3 二项式定理
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map