|课件下载
搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第7章 §7.4 空间直线、平面的平行
    立即下载
    加入资料篮
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行01
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行02
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行03
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行04
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行05
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行06
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行07
    新高考数学一轮复习课件  第7章 §7.4 空间直线、平面的平行08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第7章 §7.4 空间直线、平面的平行

    展开
    这是一份新高考数学一轮复习课件 第7章 §7.4 空间直线、平面的平行,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    §7.4 空间直线、平面的平行
    1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.
    LUOSHIZHUGANZHISHI
    1.线面平行的判定定理和性质定理
    _____________
    __________________
    a∥αa⊂βα∩β=b
    2.面面平行的判定定理和性质定理
    ____________________________
    a⊂βb⊂βa∩b=Pa∥αb∥α
    _____________________
    α∥βα∩γ=aβ∩γ=b
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(  )(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(  )(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(  )(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(  )
    1.下列说法中,与“直线a∥平面α”等价的是A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交
    因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.
    2.已知不重合的直线a,b和平面α,则下列选项正确的是A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α
    若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.
    3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为___________.
    ∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.
    TANJIUHEXINTIXING
    例1 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:(1)PB∥平面ACF;
    直线与平面平行的判定与性质
    命题点1 直线与平面平行的判定
    如图,连接BD交AC于O,连接OF,∵四边形ABCD是平行四边形,∴O是BD的中点,又∵F是PD的中点,∴OF∥PB,又∵OF⊂平面ACF,PB⊄平面ACF,∴PB∥平面ACF.
    (2)EF∥平面PAB.
    取PA的中点G,连接GF,BG.∵F是PD的中点,∴GF是△PAD的中位线,
    ∵底面ABCD是平行四边形,E是BC的中点,
    ∴四边形BEFG是平行四边形,∴EF∥BG,
    又∵EF⊄平面PAB,BG⊂平面PAB,∴EF∥平面PAB.
    例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.
    命题点2 直线与平面平行的性质
    如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.
    如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.
    ∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.
    (1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
    跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点. (1)求证:AM∥平面BDE;
    如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.
    (2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
    l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.
    例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;
    平面与平面平行的判定与性质
    ∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.
    (2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.
    ∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.
    延伸探究 在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求 的值.
    如图,连接A1B交AB1于O,连接OD1.由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,
    如图,在三棱柱ABC-A1B1C1中,E,F,G分别为B1C1,A1B1,AB的中点. (1)求证:平面A1C1G∥平面BEF;
    ∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,∴EF∥平面A1C1G,又F,G分别为A1B1,AB的中点,∴A1F=BG,又A1F∥BG,∴四边形A1GBF为平行四边形,
    则BF∥A1G,∵A1G⊂平面A1C1G,BF⊄平面A1C1G,∴BF∥平面A1C1G,又EF∩BF=F,EF,BF⊂平面BEF,∴平面A1C1G∥平面BEF.
    (2)若平面A1C1G∩BC=H,求证:H为BC的中点.
    ∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.
    证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).
    跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形. (1)证明:平面A1BD∥平面CD1B1;
    由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.
    又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.
    (2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.
    由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.
    例4 如图,在正方体ABCD-A1B1C1D1中,P,Q分别为对角线BD,CD1上的点,且(1)求证:PQ∥平面A1D1DA;
    连接CP并延长,与DA的延长线交于M点,如图,连接MD1,因为四边形ABCD为正方形,所以BC∥AD,故△PBC∽△PDM,
    又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,故PQ∥平面A1D1DA.
    又DA⊂平面A1D1DA,PR⊄平面A1D1DA,所以PR∥平面A1D1DA,又PQ∥平面A1D1DA,PQ∩PR=P,PQ,PR⊂平面PQR,所以平面PQR∥平面A1D1DA.
    如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;
    如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.
    (2)平面BDE∥平面MNG.
    因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.
    证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.
    跟踪训练3 如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH;
    ∵四边形EFGH为平行四边形,∴EF∥HG.∵HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.
    (2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
    设EF=x(0与(1)同理可得CD∥FG,
    ∴四边形EFGH的周长
    又∵0KESHIJINGLIAN
    1.(2022·宁波模拟)下列命题中正确的是A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α
    A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.
    2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
    对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;
    对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.
    3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形
    由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.
    又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.
    4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于A.2∶3 B.2∶5C.4∶9 D.4∶25
    ∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.
    5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是
    对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;
    对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.
    6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是A.没有水的部分始终呈棱柱形B.水面EFGH所在四边形的面积为定值C.随着容器倾斜程度的不同,A1C1始终与水面所在平面平行D.当容器倾斜如图(3)所示时,AE·AH为定值
    根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A正确;由题图可知水面EFGH的边EF的长保持不变,但邻边的长却随倾斜程度而改变,可知B错误;
    因为A1C1∥AC,AC⊂平面ABCD,A1C1⊄平面ABCD,所以A1C1∥平面ABCD,当平面EFGH不平行于平面ABCD时,A1C1不平行于水面所在平面,故C错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH-BFG的体积V为定值,又V=S△AEH·AB,高AB不变,所以S△AEH也不变,即AE·AH为定值,故D正确.
    ①由线面平行的判定定理知l⊄α;②由线面平行的判定定理知l⊄α.
    8.如图所示,在正四棱柱ABCD—A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件_________________________________,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)
    点M在线段FH上(或点M与点H重合)
    连接HN,FH,FN(图略),则FH∥DD1,HN∥BD,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.
    9.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,AA1的中点,求证:(1)BF∥HD1;
    如图.取B1B的中点M,连接HM,MC1,易证四边形HMC1D1是平行四边形,∴HD1∥MC1.又MC1∥BF,∴BF∥HD1.
    (2)EG∥平面BB1D1D;
    取BD的中点O,连接OE,OD1,
    ∴OE綉D1G.∴四边形OEGD1是平行四边形,∴EG∥D1O.又D1O⊂平面BB1D1D,EG⊄平面BB1D1D,∴EG∥平面BB1D1D.
    (3)平面BDF∥平面B1D1H.
    由(1)知BF∥HD1,由题意易证B1D1∥BD.又B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.
    10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC= ,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;
    所以BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO∥AP,因为FO⊂平面BEF,AP⊄平面BEF,
    所以AP∥平面BEF.
    (2)求证:GH∥平面PAD.
    连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,因为PD⊂平面PAD,FH⊄平面PAD,所以FH∥平面PAD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,因为AD⊂平面PAD,OH⊄平面PAD,所以OH∥平面PAD.
    又FH∩OH=H,FH,OH⊂平面OHF,所以平面OHF∥平面PAD.又因为GH⊂平面OHF,所以GH∥平面PAD.
    11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β
    如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.
    12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG
    过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.
    13.(多选)(2022·临沂模拟)如图1,在正方形ABCD中,点E为线段BC上的动点(不含端点),将△ABE沿AE翻折,使得二面角B-AE-D为直二面角,得到图2所示的四棱锥B-AECD,点F为线段BD上的动点(不含端点),则在四棱锥B-AECD中,下列说法正确的有A.B,E,C,F四点不共面B.存在点F,使得CF∥平面BAEC.三棱锥B-ADC的体积为定值D.存在点E使得直线BE与直线CD垂直
    对于A,假设直线BE与直线CF在同一平面上,所以E在平面BCF上,又因为E在折前线段BC上,BC∩平面BCF=C,所以E与C重合,与E异于C矛盾,所以直线BE与直线CF必不在同一平面上,即B,E,C,F四点不共面,故A正确;对于B,如图,当点F为线段BD的中点,
    取AB的中点G,连接GE,GF,
    则EC∥FG且EC=FG,所以四边形ECFG为平行四边形,所以FC∥EG,又因为EG⊂平面BAE,则直线CF与平面BAE平行,故B正确;对于C,在三棱锥B-ADC中,因为点E的移动会导致点B到平面ACD的距离发生变化,所以三棱锥B-ADC的体积不是定值,故C不正确;对于D,过D作DH⊥AE于H,因为平面BAE⊥平面AECD,平面BAE∩平面AECD=AE,所以DH⊥平面BAE,所以DH⊥BE,
    若存在点E使得直线BE与直线CD垂直,DH⊂平面AECD,且DC⊂平面AECD,DH∩DC=D,所以BE⊥平面AECD,所以BE⊥AE,与△ABE是以B为直角的三角形矛盾,所以不存在点E使得直线BE与直线CD垂直,故D不正确.
    14.如图,在长方体ABCD-A1B1C1D1中,AD=DD1=1,AB= ,E,F,G分别是AB,BC,C1D1的中点,点P在平面ABCD内,若直线D1P∥平面EFG,则线段D1P长度的最小值是_____.
    如图,连接D1A,AC,D1C.因为E,F,G分别为AB,BC,C1D1的中点,所以AC∥EF,又EF⊄平面ACD1,AC⊂平面ACD1,则EF∥平面ACD1.同理可得EG∥平面ACD1,又EF∩EG=E,EF,EG⊂平面EFG,所以平面ACD1∥平面EFG.因为直线D1P∥平面EFG,所以点P在直线AC上.
    15.(2022·合肥市第一中学模拟)正方体ABCD-A1B1C1D1的棱长为1,点M,N分别是棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥平面AMN,则PA1的长度范围为
    取B1C1的中点E,BB1的中点F,连接A1E,A1F,EF,取EF的中点O,连接A1O,如图所示,∵点M,N分别是棱长为1的正方体ABCD-A1B1C1D1中棱BC,CC1的中点,∴AM∥A1E,MN∥EF,∵AM∩MN=M,A1E∩EF=E,AM,MN⊂平面AMN,A1E,EF⊂平面A1EF,∴平面AMN∥平面A1EF,
    ∵动点P在正方形BCC1B1(包括边界)内运动,且PA1∥平面AMN,∴点P的轨迹是线段EF,
    ∴当P与O重合时,PA1的长度取最小值A1O,
    16.如图,正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为AB1,A1C1上的点,A1N=AM.(1)求证:MN∥平面BB1C1C;
    如图,作NE∥A1B1交B1C1于点E,作MF∥AB交BB1于点F,连接EF,则NE∥MF.
    ∵A1C1=AB1,A1N=AM,∴C1N=B1M.
    又AB=A1B1,∴NE=MF.∴四边形MNEF是平行四边形,∴MN∥EF,又MN⊄平面BB1C1C,EF⊂平面BB1C1C,∴MN∥平面BB1C1C.
    (2)求MN的最小值.
    设B1E=x,∵NE∥A1B1,
    B1C1=BB1=a,B1E=x,
    相关课件

    新高考数学一轮复习讲练测课件第7章§7.4空间直线、平面的平行 (含解析): 这是一份新高考数学一轮复习讲练测课件第7章§7.4空间直线、平面的平行 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,a⊄α,b⊂α,a∥b,a∥α,a⊂β,α∩β=b,此平面等内容,欢迎下载使用。

    (新高考)高考数学一轮复习课件第7章§7.4《空间直线、平面的平行》(含解析): 这是一份(新高考)高考数学一轮复习课件第7章§7.4《空间直线、平面的平行》(含解析),共60页。PPT课件主要包含了考试要求,落实主干知识,a⊄α,b⊂α,a∥b,相交直线,平行四边形,探究核心题型,思维升华,平行关系的综合应用等内容,欢迎下载使用。

    高考数学一轮复习第7章7.4空间直线平面的垂直7课件: 这是一份高考数学一轮复习第7章7.4空间直线平面的垂直7课件,共60页。PPT课件主要包含了内容索引,必备知识预案自诊,知识梳理,直线与平面垂直,m∩nO,a⊥α,b⊂α,a∥b,直二面角,b⊥α等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第7章 §7.4 空间直线、平面的平行
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map