高中生物高考 2021届高三大题优练5 遗传的细胞基础与分子基础、生物变异与育种 教师版
展开这是一份高中生物高考 2021届高三大题优练5 遗传的细胞基础与分子基础、生物变异与育种 教师版,共9页。
例1:大豆蛋白在人体内经消化道中酶的作用后,可形成小肽(短的肽链)。回答下列问题:
(1)在大豆细胞中,以mRNA为模板合成蛋白质时,除mRNA外还需要其他种类的核酸分子参与,它们是______________、______________。
(2)大豆细胞中大多数mRNA和RNA聚合酶从合成部位到执行功能部位需要经过核孔。就细胞核和细胞质这两个部位来说,作为mRNA合成部位的是____________,作为mRNA执行功能部位的是______________;作为RNA聚合酶合成部位的是______________,作为RNA聚合酶执行功能部位的是______________。
(3)部分氨基酸的密码子如表所示。若来自大豆的某小肽对应的编码序列为UACGAACAUUGG,则该小肽的氨基酸序列是______________。若该小肽对应的DNA序列有3处碱基发生了替换,但小肽的氨基酸序列不变,则此时编码小肽的RNA序列为______________。
【答案】(1)rRNA tRNA
(2)细胞核 细胞质 细胞质 细胞核
(3)酪氨酸-谷氨酸-组氨酸-色氨酸 UAUGAGCACUGG
【解析】(1)翻译过程中除了需要mRNA外,还需要的核酸分子组成核糖体的rRNA和运输氨基酸的tRNA。(2)就细胞核和细胞质这两个部位来说,mRNA是在细胞核内以DNA的一条链为模板合成的,合成后需进入细胞质翻译出相应的蛋白质。RNA聚合酶的化学本质是蛋白质,在细胞质中合成后,进入细胞核用于合成RNA。(3)根据该小肽的编码序列和对应的部分密码子表可知,该小肽的氨基酸序列是:酪氨酸-谷氨酸-组氨酸-色氨酸。由于谷氨酸、酪氨酸、组氨酸对应的密码子各有两种,故可知对应的DNA序列有3处碱基发生替换后,氨基酸序列不变,则形成的编码序列为UAUGAGCACUGG。
例2:普通小麦是目前世界各地栽培的重要粮食作物。普通小麦的形成包括不同物种杂交和染色体加倍过程,如图所示(其中A、B、D分别代表不同物种的一个染色体组,每个染色体组均含7条染色体)。在此基础上,人们又通过杂交育种培育出许多优良品种。回答下列问题:
(1)在普通小麦的形成过程中,杂种一是高度不育的,原因是________。已知普通小麦是杂种二染色体加倍形成的多倍体,普通小麦体细胞中有__________条染色体。一般来说,与二倍体相比,多倍体的优点是__________(答出2点即可)。
(2)若要用人工方法使植物细胞染色体加倍,可采用的方法有_______(答出1点即可)。
(3)现有甲、乙两个普通小麦品种(纯合体),甲的表现型是抗病易倒伏,乙的表现型是易感病抗倒伏。若要以甲、乙为实验材料设计实验获得抗病抗倒伏且稳定遗传的新品种,请简要写出实验思路_______。
【答案】(1)无同源染色体,不能进行正常的减数分裂 42 营养物质含量高、茎秆粗壮
(2)秋水仙素处理
(3)甲、乙两个品种杂交,F1自交,选取F2中既抗病又抗倒伏、且自交后代不发生性状分离的植株
【解析】(1)杂种一是一粒小麦和斯氏麦草杂交的产物,细胞内含有一粒小麦和斯氏麦草各一个染色体组,所以细胞内不含同源染色体,不能进行正常的减数分裂,因此高度不育;普通小麦含有6个染色体组,每个染色体组有7条染色体,所以体细胞有42条染色体;多倍体植株通常茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。(2)人工诱导植物细胞染色体加倍可以采用秋水仙素处理。(3)为获得稳定遗传的抗病抗倒伏的小麦,可以利用杂交育种,设计思路如下:将甲和乙两品种杂交获得F1,将F1植株进行自交,选取F2中既抗病又抗倒伏的、且自交后代不发生性状分离的植株,即为稳定遗传的抗病又抗倒伏的植株。
1.细胞周期可分为分裂间期和分裂期(M期),根据DNA合成情况,分裂间期又分为G1期、S期和G2期。为了保证细胞周期的正常运转,细胞自身存在着一系列监控系统(检验点),对细胞周期的过程是否发生异常加以检测,部分检验点如图所示。只有当相应的过程正常完成,细胞周期才能进入下一个阶段运行。请据图回答下列问题:
(1)与G1期细胞相比,G2期细胞中染色体及核DNA数量的变化是__________。
(2)细胞有丝分裂的重要意义在于通过__________,保持亲子代细胞之间的遗传稳定性。图中检验点1、2和3的作用在于检验DNA分子是否__________(填序号:①损伤和修复、②完成复制);检验发生分离的染色体是否正确到达细胞两极,从而决定胞质是否分裂的检验点是__________。
(3)细胞癌变与细胞周期调控异常有关,癌细胞的主要特征是_________。有些癌症采用放射性治疗效果较好,放疗前用药物使癌细胞同步化,治疗效果会更好。诱导细胞同步化的方法主要有两种:DNA合成阻断法、分裂中期阻断法。前者可用药物特异性抑制DNA合成,主要激活检验点__________,将癌细胞阻滞在S期;后者可用秋水仙碱抑制__________的形成,主要激活检验点__________,使癌细胞停滞于中期。
【答案】(1)染色体数不变,核DNA数加倍
(2)染色体正确复制和平均分配 ①② 检验点5
(3)细胞无限增殖 2 纺锤体 4
【解析】(1)G2期细胞已完成DNA复制和组蛋白合成,其每条染色体含有两条染色单体,每个染色单体含有一个DNA,染色体数目不变,DNA加倍;(2)细胞有丝分裂的重要意义在于通过间期的染色体正确复制和分裂期的平均分配,保证亲子代细胞的遗传物质保持一致;保持遗传的稳定性。图中检验点1、2和3依次处在间期的G1-S、S、G2-M,其主要作用在于检验DNA分子是否损伤和修复,DNA是否完成复制;检验点5主要检验发生分离的染色体是否正确到达细胞两极,从而决定胞质是否分裂;(3)癌细胞的主要特征是细胞无限增殖,细胞表面糖蛋白减少,失去接触抑制;DNA合成阻断法是用药物特异性抑制癌细胞的DNA合成,主要激活检验点2,将癌细胞阻断在S期;分裂中期阻断法可用秋水仙素碱抑制纺锤体的形成,染色体不能移向两极,故主要激活检验点4,使癌细胞停滞于中期。
2.IGF-2是小鼠正常发育必需的一种蛋白质,缺乏时小鼠个体矮小。小鼠细胞中A1基因控制IGF-2的合成,若突变为A2基因则表达失效。有研究发现,DNA存在如图所示的甲基化现象,甲基化不导致碱基序列的改变,小鼠卵细胞形成时若A1基因特定区域发生甲基化,会阻断该基因的转录,精子形成时无此现象。
(1)据题可知,A1基因和A2基因是一对_______。A1和A2的根本区别是___________________。
(2)A1基因的甲基化是否属于基因突变?_______,原因是______________________。
(3)用A1基因制成基因探针,_______(填“能”或“不能”)在上述卵细胞中检测到A1基因的mRNA。基因型为A1A2的小鼠可能表现为个体矮小,请解释原因:_____________________。
【答案】(1)等位基因 两者的碱基排列顺序(遗传信息)不同
(2)不属于 甲基化不导致碱基(序列)的改变
(3)不能 A1基因来自母本,发生了甲基化不能表达(合理即可)
3.心肌细胞不能增殖,ARC基因在心肌细胞中特异性表达,抑制其细胞凋亡,以维持正常数量。细胞中某些基因转录形成的前体RNA加工过程中会产生许多小RNA,如miR-223(链状)、HRCR(环状)。HRCR可以吸附miR-223等,以达到清除它们的目的(如下图)。当心肌细胞缺血、缺氧时,某些基因过度表达会产生过多的miR-223,导致心肌细胞凋亡,最终引起心力衰竭。请回答有关问题:
(1)过程①的原料是________,催化该过程的酶是________。过程②的场所是________。
(2)链状小RNA越短越容易被HRCR吸附,这是因为 。与ARC基因相比,核酸杂交分子1中特有的碱基对是________。
(3)缺血、缺氧时,某些基因过度表达产生过多的miR-223,会导致过程②因________的缺失而受阻,最终导致心力衰竭。
(4)科研人员认为,HRCR有望成为减缓心力衰竭的新药物,其依据是_____________________________
____________________________________。
【答案】(1)核糖核苷酸 RNA聚合酶 核糖体
(2)其碱基数目少,特异性弱,更容易与HRCR结合 A-U
(3)模板 HRCR与miR-223碱基互补配对,导致ARC基因的表达增加,抑制心肌细胞的凋亡
【解析】(1)过程①形成mRNA,称为转录,催化该过程的酶是RNA聚合酶,原料是核糖核苷酸,过程②表示翻译,翻译过程的场所是核糖体。(2)链状小RNA越短越容易被HRCR吸附,这是因为其碱基数目少,特异性弱,更容易与HRCR结合。与ARC基因(碱基配对方式为A-T、C-G)相比,核酸杂交分子1 (碱基配对方式为A-U、C-G)中所有的碱基对是A-U。(3)缺血、缺氧时,某些基因过度表达产生过多的miR-223,miR-223与mRNA结合形成核酸杂交分子1,导致过程②因模板的缺失而受阻,最终导致心力衰竭。(4)科研人员认为,HRCR有望成为减缓心力衰遇的新药物,其依据是HRCR与miR-223碱基互补配对,导致ARC基因的表达增加,抑制心肌细胞的凋亡。
4.遗传学理论可用于指导农业生产实践。回答下列问题:
(1)生物体进行有性生殖形成配子的过程中,在不发生染色体结构变异的情况下,产生基因重新组合的途径有两条,分别是________________。
(2)在诱变育种过程中,通过诱变获得的新性状一般不能稳定遗传,原因是________________,若要使诱变获得的性状能够稳定遗传,需要采取的措施是____________。
【答案】(1)在减数分裂过程中,随着非同源染色体的自由组合,非等位基因自由组合;同源染色体上的等位基因随着非姐妹染色单体的交换而发生交换,导致染色单体上的基因重组
(2)控制新性状的基因是杂合的 通过自交筛选性状能稳定遗传的子代
【解析】(1)由分析可知,减数分裂形成配子的过程中,基因重组的途径有减数第一次分裂后期,非同源染色体上的非等位基因自由组合;减数第一次分裂前期同源染色体的非姐妹染色单体之间发生交叉互换。(2)在诱变育种过程中,诱变获得的新个体通常为杂合子,自交后代会发生性状分离,故可以将该个体进行自交,筛选出符合性状要求的个体后再自交,重复此过程,直到不发生性状分离,即可获得稳定遗传的纯合子。
5.小麦的面筋强度是影响面制品质量的重要因素之一,如制作优质面包需强筋面粉,制作优质饼干需弱筋面粉等。小麦有三对等位基因(A/a,B1/B2,D1/D2)分别位于三对同源染色体上,控制合成不同类型的高分子量麦谷蛋白(HMW),从而影响面筋强度。科研人员以两种纯合小麦品种为亲本杂交得F1,F1自交得F2,以期选育不同面筋强度的小麦品种。相关信息见下表。
基因 | 基因的表达 产物(HMW) | 亲本 | F1 | 育种目标 | ||
小偃6号 | 安农91168 | 强筋小麦 | 弱筋小麦 | |||
A | 甲 | + | + | + | + | - |
B1 | 乙 | - | + | + | - | + |
B2 | 丙 | + | - | + | + | - |
D1 | 丁 | + | - | + | - | + |
D2 | 戊 | - | + | + | + | - |
注:“+”表示有相应表达产物;“-”表示无相应表达产物
据表回答:
(1)三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制________来控制生物体的性状。
(2)在F1植株上所结的F2种子中,符合强筋小麦育种目标的种子所占比例为________,符合弱筋小麦育种目标的种子所占比例为________。
(3)为获得纯合弱筋小麦品种,可选择F2中只含________________产物的种子,采用______________等育种手段,选育符合弱筋小麦育种目标的纯合品种。
【答案】(1)蛋白质的结构
(2)1/16 0
(3)甲、乙、丁 诱变、基因工程、将其与不含甲产物的小麦品种进行杂交
【解析】(1)由题意“控制合成不同类型的高分子量麦谷蛋白,从而影响面筋强度”可知,三对基因的表达产物对小麦面筋强度的影响体现了基因可通过控制蛋白质的结构直接控制生物体的性状。(2)由分析可知,亲本小偃6号基因型为AAB2B2D1D1,安农91168的基因型为AAB1B1D2D2,则F1的基因型为AAB1B2D1D2,而育种目标中强筋小麦基因型为AAB2B2D2D2,弱筋小麦基因型为AAB1B1D1D1,根据自由组合定律可得出,F2中符合强筋小麦育种目标的种子占1×1/4×1/4=1/16,符合弱筋小麦育种目标的种子占0。(3)为获得纯合弱筋小麦品种(aaB1B1D1D1),能从F2中选择的只能是AAB1B1D1D1,即含有甲、乙和丁产物的小麦种子。由于小麦AAB1B1D1D1没有a基因,要想获得aaB1B1D1D1,则需要通过诱变或基因工程使其获得a基因,或通过将其与不含甲产物的小麦品种进行杂交以获得aa的个体。
6.大麦是高度自交植物,配制杂种相当困难。育种工作者采用染色体诱变的方法培育获得三体品系,该品系的一对染色体上有紧密连锁的两个基因,一个是雄性不育基因(ms),使植株不能产生花粉,另一个是黄色基因(r),控制种皮的颜色。这两个基因的显性等位基因Ms能形成正常花粉,R控制茶褐色种皮,带有这两个显性基因的染色体片段易位连接到另一染色体片段上,形成一个额外染色体,成为三体,该品系的自交后代分离出两种植株,如下图所示。请回答下列问题:
(1)已知大麦的体细胞染色体是7对,育成的新品系三体大麦体细胞染色体为_________________条。
(2)三体大麦减数分裂时,若其他染色体都能正常配对,唯有这条额外的染色体,在后期随机分向一极,其中花粉中有额外染色体的配子无授粉能力。下图为三体大麦减数分裂的图片,Ms与ms都处于同一极的分裂图像有_____________,减数分裂Ⅰ细胞两极染色体数之比为____________。减数分裂结束后可产生的配子基因组成是___________和__________。
(3)三体大麦自花授粉后,____________种皮的个体为雄性不育,___________种皮的个体与亲本一样,雄性可育。由于种皮颜色不同,可采用机选方式分开,方便实用,在生产中采用不育系配制杂种的目的是______________。
(4)三体大麦自花授粉,子代黄色种皮的种子和茶褐色种皮的种子的理论比值为____________,但在生产实践中发现,大多数种子为黄色种皮,这是因为____________。
【答案】(1)15
(2)丙 7∶8 MsmsRr msr
(3)黄色 茶褐色 不用进行去雄环节降低劳动成本
(4)1∶1 花粉中有额外染色体的配子无授粉能力使茶褐色种子数量减少
【解析】(1)根据题意,育成的新品系三体大麦体细胞中染色体比正常个体体细胞额外多一条,因此育成的新品系三体大麦体细胞染色体为15条。(2)根据题意,三体大麦减数分裂时,若其他染色体都能正常配对,唯有这条额外的染色体,在后期随机分向一极,两极染色体数比为7∶8,Ms与ms都处于同一极的分裂图像为丙,又由于ms、r两极均有,而Ms、R仅一极有,所以配子基因型为MsmsRr和msr。(3)根据题意,该三体大麦的基因型为MsmsmsRrr,能产生2种类型的雌配子msr和MsmsRr,1种类型的雄配子msr,因此该三体大麦自花授粉后,msmsrr为黄色雄性不育,MsmsmsRrr为茶褐色雄性可育。由于种皮颜色不同,可采用机选方式分开,方便实用,在生产中采用不育系配制杂种的目的是不用进行去雄环节降低劳动成本。(4)根据题意,该三体大麦的基因型为MsmsmsRrr,能产生2种类型的雌配子msr和MsmsRr,1种类型的雄配子msr,因此该三体大麦自花授粉,子代黄色种皮msmsrr的种子和茶褐色种皮MsmsmsRrr的种子的理论比值为=1∶1。但在生产实践中发现,大多数种子为黄色种皮,这是因为花粉中有额外染色体的配子无授粉能力使茶褐色种子数量减少。
相关试卷
这是一份高中生物高考 2021届高三大题优练5 遗传的细胞基础与分子基础、生物变异与育种 学生版,共10页。
这是一份高中生物高考 2021届高三大题优练1 细胞的分子基础与结构基础、物质运输综合 教师版,共10页。
这是一份高中生物高考 2021届高三大题优练1 细胞的分子基础与结构基础、物质运输综合 教师版,共9页。