高考数学一轮复习 专题11.1 两个计数原理(讲)
展开高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题11.1 两个计数原理
新课程考试要求 | 1. 理解分类加法计数原理和分步乘法计数原理,会解决简单的计数问题. |
核心素养 | 本节涉及数学运算、数学建模、数学抽象等核心数学素养. |
高考预测 | (1)考查两个计数原理; (2)考查排列组合问题、概率计算中两个计数原理的应用. (3)两个计数原理是解决排列、组合问题的基本方法,同时又能独立地解决一些简单的计数问题,通常与排列组合问题或概率计算问题综合考查. |
【知识清单】
一. 分类加法计数原理
1. 分类加法计数原理(加法原理)的概念
一般形式:完成一件事有n类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,……,在第n类方案中有种不同的方法,那么完成这件事共有N=++……+种不同的方法.
二. 分步乘法计数原理
1.分步乘法计数原理(乘法原理)的概念
一般形式:完成一件事需要n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=种不同的方法.
2. 两个原理的区别:
(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.
(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.
3.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.
【考点分类剖析】
考点一 :分类加法计数原理
【典例1】(2021·江西·横峰中学高二期中(理))由数字1,2,3组成的无重复数字的整数中,偶数的个数为( )
A.15 B.12 C.10 D.5
【典例2】(2021·甘肃·静宁县第一中学高二月考(理))如图所示,在,间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,则焊接点脱落的不通情况有( )种.
A.9 B.11 C.13 D.15
【规律方法】
分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.
(3)分类时除了不能交叉重复外,还不能有遗漏.
【变式探究】
1.(2021·全国·高二课时练习)用1,2,3这3个数字可写出没有重复数字的整数有________个.
2.(2020·北京市第三十一中学高三期中)某公园划船收费标准如下:
船型 | 两人船 (限乘2人) | 四人船 (限乘4人) | 六人船 (限乘6人) |
每船租金 (元/小时) | 90 | 100 | 130 |
某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为___________元,租船的总费用共有__________种可能.
【总结提升】
分类加法计数原理的两个条件:
(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;
(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.
考点二 : 分步乘法计数原理
【典例3】(2021·福建·泉州科技中学高三月考)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为( )
A. B. C. D.
【典例4】(2020·陕西高三二模(理))回文数指从左向右读与从右向左读都一样的正整数,如22,343,1221,94249等.显然两位回文数有9个,即11,22,33,99;三位回文数有90个,即101,121,131,…,191,202,…,999.则四位回文数有______个,位回文数有______个.
【总结提升】
应用分步乘法计数原理的注意事项
(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
【变式探究】
1.(2020·福建福州·高三其他模拟(理))数独是源自18世纪瑞士的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有这三个数字,则不同的填法有( )
A.12种 B.24种
C.72种 D.216种
2. (2021·全国·高二课时练习)一植物园的参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线共有( )
A.6种 B.8种
C.36种 D.48种
考点三 : 计数原理的综合运用
【典例5】(2021·全国·高二课时练习)某公司新招聘进8名员工,平均分给甲、乙两个部门,其中2名英语翻译人员不能分给同一个部门,另外3名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是( )
A.18 B.24 C.36 D.72
【典例6】(2020·浙江高三月考)从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成_____个没有重复数字的四位偶数.
【总结提升】
1. 计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.
2.利用分类计数原理解决问题时: (1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.
3.利用分步乘法计数原理解决问题时要注意:
(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.
(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.
(3)对完成各步的方法数要准确确定.
4. 用两个计数原理解决计数问题时,关键是明确需要分类还是分步.
(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.
(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.
5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.
5. (1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.
(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.
6. 应用两种原理解题
(1)分清要完成的事情是什么?
(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;
(3)有无特殊条件的限制;
(4)检验是否有重漏.
7. 涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.
涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.
涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.
【变式探究】
1.(2020·浙江杭州高级中学高三期中)如图给三棱柱的顶点染色,定义由同一条棱连接的两个顶点叫相邻顶点,规定相邻顶点不得使用同一种颜色,现有种颜色可供选择,则不同的染色方法有_________________.
2. (2021·全国·高二课时练习)古人用天干、地支来表示年、月、日、时的次序.用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成________组.
(新高考)高考数学一轮复习讲练测第10章§10.1两个计数原理(含解析): 这是一份(新高考)高考数学一轮复习讲练测第10章§10.1两个计数原理(含解析),共12页。试卷主要包含了1 两个计数原理等内容,欢迎下载使用。
专题01 高考数学一轮复习重点两个计数原理(解析版): 这是一份专题01 高考数学一轮复习重点两个计数原理(解析版),共8页。
2024届高考数学复习第一轮讲练测专题11.1 两个计数原理 学生版: 这是一份2024届高考数学复习第一轮讲练测专题11.1 两个计数原理 学生版,共5页。试卷主要包含了1.计算,有不同的红球个,不同的白球个.等内容,欢迎下载使用。