24-平面解析几何(直线与圆锥曲线的位置关系)-五年(2018-2022)高考数学真题按知识点分类汇编
展开五年2018-2022高考数学真题按知识点分类汇编24-平面解析几何(直线与圆锥曲线的位置关系)(含解析)
一、单选题
1.(2021·全国·统考高考真题)设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D.2
2.(2021·天津·统考高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
A. B. C.2 D.3
3.(2020·全国·统考高考真题)设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
A.4 B.8 C.16 D.32
4.(2020·全国·统考高考真题)设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )
A. B. C. D.
5.(2020·全国·统考高考真题)设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=( )
A.1 B.2 C.4 D.8
6.(2020·全国·统考高考真题)设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )
A. B.3 C. D.2
7.(2018·全国·高考真题)已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
A. B.3 C. D.4
8.(2018·全国·高考真题)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A.5 B.6 C.7 D.8
9.(2019·全国·高考真题)已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为
A. B. C. D.
二、多选题
10.(2022·全国·统考高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为 B.直线AB与C相切
C. D.
11.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
三、填空题
12.(2022·全国·统考高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
13.(2021·全国·高考真题)已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
14.(2020·海南·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
15.(2018·全国·高考真题)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.
16.(2018·浙江·高考真题)已知点P(0,1),椭圆 (m>1)上两点A,B满足,则当m=___________时,点B横坐标的绝对值最大.
四、解答题
17.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
18.(2022·全国·统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
19.(2022·全国·统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;
(2)若,求的面积.
20.(2022·全国·统考高考真题)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
21.(2022·全国·统考高考真题)在直角坐标系中,曲线的参数方程为(t为参数),曲线的参数方程为(s为参数).
(1)写出的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,求与交点的直角坐标,及与交点的直角坐标.
22.(2022·浙江·统考高考真题)如图,已知椭圆.设A,B是椭圆上异于的两点,且点在线段上,直线分别交直线于C,D两点.
(1)求点P到椭圆上点的距离的最大值;
(2)求的最小值.
23.(2022·北京·统考高考真题)已知椭圆:的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
24.(2021·全国·统考高考真题)在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
25.(2021·全国·统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
26.(2021·全国·统考高考真题)已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
27.(2021·北京·统考高考真题)已知椭圆一个顶 点,以椭圆的四个顶点为顶点的四边形面积为.
(1)求椭圆E的方程;
(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.
28.(2021·全国·统考高考真题)已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
29.(2021·浙江·统考高考真题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,
(1)求抛物线的方程;
(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.
30.(2021·天津·统考高考真题)已知椭圆的右焦点为,上顶点为,离心率为,且.
(1)求椭圆的方程;
(2)直线与椭圆有唯一的公共点,与轴的正半轴交于点,过与垂直的直线交轴于点.若,求直线的方程.
31.(2020·全国·统考高考真题)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
32.(2020·全国·统考高考真题)已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
33.(2020·山东·统考高考真题)已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
34.(2020·海南·高考真题)已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
35.(2020·北京·统考高考真题)已知椭圆过点,且.
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.
36.(2020·天津·统考高考真题)已知椭圆的一个顶点为,右焦点为,且,其中为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
37.(2020·浙江·统考高考真题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).
(Ⅰ)若,求抛物线的焦点坐标;
(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
38.(2020·江苏·统考高考真题)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求△AF1F2的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.
39.(2020·山东·统考高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.
(1)求抛物线的标准方程;
(2)若过点的直线与抛物线交于,两点,且,求直线的方程.
40.(2019·全国·统考高考真题)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
41.(2019·全国·高考真题)已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
42.(2018·全国·高考真题)设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
43.(2019·全国·高考真题)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
44.(2018·全国·高考真题)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
45.(2019·全国·高考真题)已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
46.(2018·全国·高考真题)已知斜率为的直线与椭圆交于,两点,线段的中点为.
(1)证明:;
(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.
47.(2019·全国·高考真题)已知是椭圆的两个焦点,P为C上一点,O为坐标原点.
(1)若为等边三角形,求C的离心率;
(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.
48.(2019·北京·高考真题)已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
49.(2018·全国·高考真题)设抛物线,点,,过点的直线与交于,两点.
(1)当与轴垂直时,求直线的方程;
(2)证明:.
50.(2019·天津·高考真题)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
51.(2018·北京·高考真题)已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,,,求证:为定值.
52.(2018·全国·高考真题)已知斜率为的直线与椭圆交于,两点.线段的中点为.
(1)证明:;
(2)设为的右焦点,为上一点,且.证明:.
53.(2018·天津·高考真题)设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
54.(2018·天津·高考真题)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.
55.(2018·北京·高考真题)已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.
56.(2019·天津·高考真题) 设椭圆的左焦点为,左顶点为,上顶点为B.已知(为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.
57.(2018·浙江·高考真题)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆上的动点,求△PAB面积的取值范围.
58.(2019·浙江·高考真题)如图,已知点为抛物线的焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.
(1)求的值及抛物线的准线方程;
(2)求的最小值及此时点的坐标.
59.(2019·江苏·高考真题)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
60.(2018·江苏·高考真题)在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
参考答案:
1.A
【分析】设点,由依题意可知,,,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值.
【详解】设点,因为,,所以
,
而,所以当时,的最大值为.
故选:A.
【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值..
2.A
【分析】设公共焦点为,进而可得准线为,代入双曲线及渐近线方程,结合线段长度比值可得,再由双曲线离心率公式即可得解.
【详解】设双曲线与抛物线的公共焦点为,
则抛物线的准线为,
令,则,解得,所以,
又因为双曲线的渐近线方程为,所以,
所以,即,所以,
所以双曲线的离心率.
故选:A.
3.B
【分析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.
【详解】
双曲线的渐近线方程是
直线与双曲线的两条渐近线分别交于,两点
不妨设为在第一象限,在第四象限
联立,解得
故
联立,解得
故
面积为:
双曲线
其焦距为
当且仅当取等号
的焦距的最小值:
故选:B.
【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.
4.B
【分析】根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.
【详解】因为直线与抛物线交于两点,且,
根据抛物线的对称性可以确定,所以,
代入抛物线方程,求得,所以其焦点坐标为,
故选:B.
【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.
5.A
【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.
【详解】,,根据双曲线的定义可得,
,即,
,,
,即,解得,
故选:A.
【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.
6.B
【分析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.
【详解】由已知,不妨设,
则,因为,
所以点在以为直径的圆上,
即是以P为直角顶点的直角三角形,
故,
即,又,
所以,
解得,所以
故选:B
【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.
7.B
【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值.
详解:根据题意,可知其渐近线的斜率为,且右焦点为,
从而得到,所以直线的倾斜角为或,
根据双曲线的对称性,设其倾斜角为,
可以得出直线的方程为,
分别与两条渐近线和联立,
求得,
所以,故选B.
点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.
8.D
【分析】首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.
【详解】根据题意,过点(–2,0)且斜率为的直线方程为,
与抛物线方程联立,消元整理得:,
解得,又,
所以,
从而可以求得,故选D.
【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.
9.B
【解析】设,因为再结合双曲线方程可解出,再利用三角形面积公式可求出结果.
【详解】设点,则①.
又,
②.
由①②得,
即,
,
故选B.
【点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.
10.BCD
【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
11.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
12.
【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
【详解】[方法一]:弦中点问题:点差法
令的中点为,设,,利用点差法得到,
设直线,,,求出、的坐标,
再根据求出、,即可得解;
解:令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,
所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法
解:由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即
[方法三]:
令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
13.
【分析】根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.
【详解】因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
故答案为:.
14.
【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.
【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,
又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
代入抛物线方程消去y并化简得,
解法一:解得
所以
解法二:
设,则,
过分别作准线的垂线,设垂足分别为如图所示.
故答案为:
【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.
15.2
【分析】方法一:利用点差法得到AB的斜率,结合抛物线定义可得结果.
【详解】[方法一]:点差法
设,则,所以
所以,
取AB中点,分别过点A,B作准线的垂线,垂足分别为
因为,,
因为为AB中点,所以平行于x轴,
因为M(-1,1),所以,则即.
故答案为:2.
[方法二]:【最优解】焦点弦的性质
记抛物线的焦点为F,因为,则以为直径的圆与准线相切于点M,由抛物线的焦点弦性质可知,所以.
[方法三]: 焦点弦性质+韦达定理
记抛物线的焦点为F,因为,则以为直径的圆与准线相切于点M,记中点为N,则,设,代入中,得,所以,得,所以.
[方法四]:【通性通法】暴力硬算
由题知抛物线的焦点为,设直线的方程为,代入中得,设,则,同理有,由,即.又,所以,得.
[方法五]:距离公式+直角三角形的性质
设直线为,与联立得,则从而,可得的中点,所以.
又由弦长公式知.
由得,解得,所以.
[方法六]:焦点弦的性质应用
由题可知,线段为抛物线的焦点弦,,由于以抛物线的焦点弦为直径的圆必与准线相切,又点M恰为抛物线准线上的点,因此,以为直径的圆必与准线相切于点M.
过点M作平行于轴的直线交于点N,则N为圆心.
设,则.
又因为,所以联立解得.将的值代入中求得.
因为抛物线C的焦点,所以.
【整体点评】方法一:根据点差法找出直线的斜率与两点纵坐标的关系,再根据抛物线定义求出中点坐标,从而解出;
方法二:直接根据焦点弦的性质解出,是该题的最优解;
方法三:根据焦点弦性质可知,直线过点,再根据韦达定理求出直线的斜率;
方法四:直接设出直线方程,联立运算,属于解决直线与抛物线位置关系问题的通性通法,思路直接,运算复杂;
方法五:反设直线,再通过联立,利用直角三角形的性质求解,运算较复杂;
方法六:利用焦点弦的性质直接求出其中一点的坐标,再根据斜率公式求出.
16.5
【分析】方法一:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值即可解出.
【详解】[方法一]:点差法+二次函数性质
设,由得
因为A,B在椭圆上,所以 ,即,与相减得:,所以,
,当且仅当时取最等号,即时,点B横坐标的绝对值最大.
故答案为:5.
[方法二]:【通性通法】设线+韦达定理
由条件知直线的斜率存在,设,直线的方程为,联立得,根据韦达定理得,由知,代入上式解得,所以.此时,又,解得.
[方法三]:直线的参数方程+基本不等式
设直线的参数方程为其中t为参数,为直线的倾斜角,将其代入椭圆方程中化简得,设点A,B对应的参数分别为,则.由韦达定理知,解得,所以,此时,即,代入,解得.
[方法四]:直接硬算求解+二次函数性质
设,因为,所以.
即 ①, ②,
又因为,所以.
不妨设,因此,代入②式可得.化简整理得.
由此可知,当时,上式有最大值16,即点B横坐标的绝对值有最大值2.
所以.
[方法五]:【最优解】仿射变换
如图1,作如下仿射变换,则为一个圆.
根据仿射变换的性质,点B的横坐标的绝对值最大,等价于点的横坐标的绝对值最大,则
.
当时等号成立,根据易得,此时.
[方法六]:中点弦性质的应用
设,由可知,则中点.因为,所以,整理得,由于,则时,,所以.
【整体点评】方法一:由题意中点的坐标关系,以及点差法可求出点的横、纵坐标,从而可以根据二次函数的性质解出;
方法二:常规设线,通过联立,根据韦达定理以及题目条件求出点的横坐标,然后利用基本不等式求出最值,由取等条件得解,是该题的通性通法;
方法三:利用直线的参数方程与椭圆方程联立,根据参数的几何意义,解得点的横坐标,再利用基本不等式求出最值,由取等条件得解;
方法四:利用题目条件硬算求出点的横坐标,再根据二次函数的性质解出;
方法五:根据仿射变换,利用圆的几何性质结合平面几何知识转化,求出对应点的横坐标的绝对值最大,从而解出,计算难度小,是该题的最优解;
方法六:利用中点弦的性质找出点的横、纵坐标关系,再根据关系式自身特征求出点的横坐标的绝对值的最大值,从而解出,计算量小,也是不错的方法.
17.(1)
(2)
【分析】(1)将给定点代入设出的方程求解即可;
(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
【详解】(1)解:设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
18.(1);
(2).
【分析】(1)由抛物线的定义可得,即可得解;
(2)法一:设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
【详解】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)[方法一]:【最优解】直线方程横截式
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,所以,
若要使最大,则,设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
[方法二]:直线方程点斜式
由题可知,直线MN的斜率存在.
设,直线
由 得:,,同理,.
直线MD:,代入抛物线方程可得:,同理,.
代入抛物线方程可得:,所以,同理可得,
由斜率公式可得:
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,,所以,所以直线.
[方法三]:三点共线
设,
设,若 P、M、N三点共线,由
所以,化简得,
反之,若,可得MN过定点
因此,由M、N、F三点共线,得,
由M、D、A三点共线,得,
由N、D、B三点共线,得,
则,AB过定点(4,0)
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,所以直线.
【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线的斜率关系,由基本不等式即可求出直线AB的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;
法二:常规设直线方程点斜式,解题过程同解法一;
法三:通过设点由三点共线寻找纵坐标关系,快速找到直线过定点,省去联立过程,也不失为一种简化运算的好方法.
19.(1);
(2).
【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;
(2)根据直线的斜率之和为0可知直线的倾斜角互补,根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点A到直线的距离,即可得出的面积.
【详解】(1)因为点在双曲线上,所以,解得,即双曲线.
易知直线l的斜率存在,设,,
联立可得,,
所以,,且.
所以由可得,,
即,
即,
所以,
化简得,,即,
所以或,
当时,直线过点,与题意不符,舍去,
故.
(2)[方法一]:【最优解】常规转化
不妨设直线的倾斜角为,因为,所以,由(1)知,,
当均在双曲线左支时,,所以,
即,解得(负值舍去)
此时PA与双曲线的渐近线平行,与双曲线左支无交点,舍去;
当均在双曲线右支时,
因为,所以,即,
即,解得(负值舍去),
于是,直线,直线,
联立可得,,
因为方程有一个根为,所以,,
同理可得,,.
所以,,点到直线的距离,
故的面积为.
[方法二]:
设直线AP的倾斜角为,,由,得,
由,得,即,
联立,及得,,
同理,,,故,
而,,
由,得,
故
【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线的斜率,从而联立求出点坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;
法二:前面解答与法一求解点坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.
20.(1)
(2)见解析
【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;
(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.
【详解】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
∴C的方程为:;
(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,
若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
总之,直线的斜率存在且不为零.
设直线的斜率为,直线方程为,
则条件①在上,等价于;
两渐近线的方程合并为,
联立消去y并化简整理得:
设,线段中点为,则,
设,
则条件③等价于,
移项并利用平方差公式整理得:
,
,即,
即;
由题意知直线的斜率为, 直线的斜率为,
∴由,
∴,
所以直线的斜率,
直线,即,
代入双曲线的方程,即中,
得:,
解得的横坐标:,
同理:,
∴
∴,
∴条件②等价于,
综上所述:
条件①在上,等价于;
条件②等价于;
条件③等价于;
选①②推③:
由①②解得:,∴③成立;
选①③推②:
由①③解得:,,
∴,∴②成立;
选②③推①:
由②③解得:,,∴,
∴,∴①成立.
21.(1);
(2)的交点坐标为,,的交点坐标为,.
【分析】(1)消去,即可得到的普通方程;
(2)将曲线的方程化成普通方程,联立求解即解出.
【详解】(1)因为,,所以,即的普通方程为.
(2)因为,所以,即的普通方程为,
由,即的普通方程为.
联立,解得:或,即交点坐标为,;
联立,解得:或,即交点坐标为,.
22.(1);
(2).
【分析】(1)设是椭圆上任意一点,再根据两点间的距离公式求出,再根据二次函数的性质即可求出;
(2)设直线与椭圆方程联立可得,再将直线方程与的方程分别联立,可解得点的坐标,再根据两点间的距离公式求出,最后代入化简可得,由柯西不等式即可求出最小值.
【详解】(1)设是椭圆上任意一点,,
,当且仅当时取等号,故的最大值是.
(2)设直线,直线方程与椭圆联立,可得,设,所以,
因为直线与直线交于,
则,同理可得,.则
,
当且仅当时取等号,故的最小值为.
【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.
23.(1)
(2)
【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
【详解】(1)解:依题意可得,,又,
所以,所以椭圆方程为;
(2)解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
24.(1);(2).
【分析】(1) 利用双曲线的定义可知轨迹是以点、为左、右焦点双曲线的右支,求出、的值,即可得出轨迹的方程;
(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C的方程,结合韦达定理求得直线的斜率,最后化简计算可得的值.
【详解】(1) 因为,
所以,轨迹是以点、为左、右焦点的双曲线的右支,
设轨迹的方程为,则,可得,,
所以,轨迹的方程为.
(2)[方法一] 【最优解】:直线方程与双曲线方程联立
如图所示,设,
设直线的方程为.
联立,
化简得.
则.
故.
则.
设的方程为,同理.
因为,所以,
化简得,
所以,即.
因为,所以.
[方法二] :参数方程法
设.设直线的倾斜角为,
则其参数方程为,
联立直线方程与曲线C的方程,
可得,
整理得.
设,
由根与系数的关系得.
设直线的倾斜角为,,
同理可得
由,得.
因为,所以.
由题意分析知.所以,
故直线的斜率与直线的斜率之和为0.
[方法三]:利用圆幂定理
因为,由圆幂定理知A,B,P,Q四点共圆.
设,直线的方程为,
直线的方程为,
则二次曲线.
又由,得过A,B,P,Q四点的二次曲线系方程为:
,
整理可得:
,
其中.
由于A,B,P,Q四点共圆,则xy项的系数为0,即.
【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;
方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.
方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.
25.(1);(2).
【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;
(2)设点、、,利用导数求出直线、,进一步可求得直线的方程,将直线的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.
【详解】(1)[方法一]:利用二次函数性质求最小值
由题意知,,设圆M上的点,则.
所以.
从而有.
因为,所以当时,.
又,解之得,因此.
[方法二]【最优解】:利用圆的几何意义求最小值
抛物线的焦点为,,
所以,与圆上点的距离的最小值为,解得;
(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法
抛物线的方程为,即,对该函数求导得,
设点、、,
直线的方程为,即,即,
同理可知,直线的方程为,
由于点为这两条直线的公共点,则,
所以,点A、的坐标满足方程,
所以,直线的方程为,
联立,可得,
由韦达定理可得,,
所以,,
点到直线的距离为,
所以,,
,
由已知可得,所以,当时,的面积取最大值.
[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值
同方法一得到.
过P作y轴的平行线交于Q,则.
.
P点在圆M上,则
.
故当时的面积最大,最大值为.
[方法三]:直接设直线AB方程法
设切点A,B的坐标分别为,.
设,联立和抛物线C的方程得整理得.
判别式,即,且.
抛物线C的方程为,即,有.
则,整理得,同理可得.
联立方程可得点P的坐标为,即.
将点P的坐标代入圆M的方程,得,整理得.
由弦长公式得.
点P到直线的距离为.
所以,
其中,即.
当时,.
【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然手与抛物线方程联立,由韦达定理可得,,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,,过P作y轴的平行线交于Q,则.由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且.利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面积关于的函数表达式,然后利用二次函数的性质求得最大值;
26.(1);(2)最大值为.
【分析】(1)由抛物线焦点与准线的距离即可得解;
(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.
【详解】(1)抛物线的焦点,准线方程为,
由题意,该抛物线焦点到准线的距离为,
所以该抛物线的方程为;
(2)[方法一]:轨迹方程+基本不等式法
设,则,
所以,
由在抛物线上可得,即,
据此整理可得点的轨迹方程为,
所以直线的斜率,
当时,;
当时,,
当时,因为,
此时,当且仅当,即时,等号成立;
当时,;
综上,直线的斜率的最大值为.
[方法二]:【最优解】轨迹方程+数形结合法
同方法一得到点Q的轨迹方程为.
设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为.
[方法三]:轨迹方程+换元求最值法
同方法一得点Q的轨迹方程为.
设直线的斜率为k,则.
令,则的对称轴为,所以.故直线斜率的最大值为.
[方法四]:参数+基本不等式法
由题可设.
因为,所以.
于是,所以
则直线的斜率为.
当且仅当,即时等号成立,所以直线斜率的最大值为.
【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;
方法二 同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;
方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线斜率的最大值;
方法四利用参数法,由题可设,求得x,y关于的参数表达式,得到直线的斜率关于的表达式,结合使用基本不等式,求得直线斜率的最大值.
27.(1);(2).
【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,从而可求椭圆的标准方程.
(2)设,求出直线的方程后可得的横坐标,从而可得,联立直线的方程和椭圆的方程,结合韦达定理化简,从而可求的范围,注意判别式的要求.
【详解】(1)因为椭圆过,故,
因为四个顶点围成的四边形的面积为,故,即,
故椭圆的标准方程为:.
(2)
设,
因为直线的斜率存在,故,
故直线,令,则,同理.
直线,由可得,
故,解得或.
又,故,所以
又
故即,
综上,或.
28.(1);(2)证明见解析.
【分析】(1)由离心率公式可得,进而可得,即可得解;
(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证;
充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即可得解.
【详解】(1)由题意,椭圆半焦距且,所以,
又,所以椭圆方程为;
(2)由(1)得,曲线为,
当直线的斜率不存在时,直线,不合题意;
当直线的斜率存在时,设,
必要性:
若M,N,F三点共线,可设直线即,
由直线与曲线相切可得,解得,
联立可得,所以,
所以,
所以必要性成立;
充分性:设直线即,
由直线与曲线相切可得,所以,
联立可得,
所以,
所以
,
化简得,所以,
所以或,所以直线或,
所以直线过点,M,N,F三点共线,充分性成立;
所以M,N,F三点共线的充要条件是.
【点睛】关键点点睛:
解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.
29.(1);(2).
【分析】(1)求出的值后可求抛物线的方程.
(2)方法一:设,,,联立直线的方程和抛物线的方程后可得,求出直线的方程,联立各直线方程可求出,根据题设条件可得,从而可求的范围.
【详解】(1)因为,故,故抛物线的方程为:.
(2)[方法一]:通式通法
设,,,
所以直线,由题设可得且.
由可得,故,
因为,故,故.
又,由可得,
同理,
由可得,
所以,
整理得到,
故,
令,则且,
故,
故即,
解得或或.
故直线在轴上的截距的范围为或或.
[方法二]:利用焦点弦性质
设直线的方程为,直线的方程为,直线的方程为,直线的方程为,由题设可得且.
由得,所以.
因为,
,.
由得.
同理.
由得.
因为,
所以即.
故.
令,则.
所以,解得或或.
故直线在x轴上的截距的范围为.
[方法三]【最优解】:
设,
由三点共线得,即.
所以直线的方程为,直线的方程为,直线的方程为.
设直线的方程为,
则.
所以.
故(其中).
所以.
因此直线在x轴上的截距为.
【整体点评】本题主要是处理共线的线段长度问题,主要方法是长度转化为坐标.
方法一:主要是用坐标表示直线,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.
方法二:利用焦点弦的性质求得直线的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.
方法三:利用点在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.
30.(1);(2).
【分析】(1)求出的值,结合的值可得出的值,进而可得出椭圆的方程;
(2)设点,分析出直线的方程为,求出点的坐标,根据可得出,求出、的值,即可得出直线的方程.
【详解】(1)易知点、,故,
因为椭圆的离心率为,故,,
因此,椭圆的方程为;
(2)设点为椭圆上一点,
先证明直线的方程为,
联立,消去并整理得,,
因此,椭圆在点处的切线方程为.
在直线的方程中,令,可得,由题意可知,即点,
直线的斜率为,所以,直线的方程为,
在直线的方程中,令,可得,即点,
因为,则,即,整理可得,
所以,,因为,,故,,
所以,直线的方程为,即.
【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线:
(1)设切线方程为与椭圆方程联立,由进行求解;
(2)椭圆在其上一点的切线方程为,再应用此方程时,首先应证明直线与椭圆相切.
31.(1);(2)证明详见解析.
【分析】(1)由已知可得:, ,,即可求得,结合已知即可求得:,问题得解.
(2)方法一:设,可得直线的方程为:,联立直线的方程与椭圆方程即可求得点的坐标为,同理可得点的坐标为,当时,可表示出直线的方程,整理直线的方程可得:即可知直线过定点,当时,直线:,直线过点,命题得证.
【详解】(1)依据题意作出如下图象:
由椭圆方程可得:, ,
,
,
椭圆方程为:
(2)[方法一]:设而求点法
证明:设,
则直线的方程为:,即:
联立直线的方程与椭圆方程可得:,整理得:
,解得:或
将代入直线可得:
所以点的坐标为.
同理可得:点的坐标为
当时,
直线的方程为:,
整理可得:
整理得:
所以直线过定点.
当时,直线:,直线过点.
故直线CD过定点.
[方法二]【最优解】:数形结合
设,则直线的方程为,即.
同理,可求直线的方程为.
则经过直线和直线的方程可写为.
可化为.④
易知A,B,C,D四个点满足上述方程,同时A,B,C,D又在椭圆上,则有,代入④式可得.
故,可得或.
其中表示直线,则表示直线.
令,得,即直线恒过点.
【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.
第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.
32.(1);(2).
【分析】(1)因为,可得,,根据离心率公式,结合已知,即可求得答案;
(2)方法一:过点作轴垂线,垂足为,设与轴交点为,可得 ,可求得点坐标,从而求出直线的直线方程,根据点到直线距离公式和两点距离公式,即可求得的面积.
【详解】(1),,
根据离心率,解得或(舍),
的方程为:,即.
(2)[方法一]:通性通法
不妨设,在x轴上方,过点作轴垂线,垂足为,设直线与轴交点为
根据题意画出图形,如图
,, ,
又, ,
,根据三角形全等条件“”,可得:,
,,,
设点为,可得点纵坐标为,将其代入,
可得:,解得:或,点为或,
①当点为时,故,
,,可得:点为,
画出图象,如图
, ,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为,
根据两点间距离公式可得:,面积为:;
②当点为时,故,,,可得:点为,画出图象,如图
, ,可求得直线的直线方程为:,
根据点到直线距离公式可得到直线的距离为,
根据两点间距离公式可得:,
面积为: ,综上所述,面积为:.
[方法二]【最优解】:
由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为E.设,由题知,.
故,
①因为,如图,所以,.
②因为,如图,所以.
综上有
[方法三]:
由已知可得,直线的斜率一定存在,设直线的方程为,由对称性可设,联立方程消去y得,
由韦达定理得,所以,
将其代入直线的方程得,所以,
则.
因为,则直线的方程为,
则.
因为,所,,
即,故或,即或.
当时,点P,Q的坐标分别为,
直线的方程为,点A到直线的距离为,
故的面积为.
当时,点P,Q的坐标分别为,
直线的方程为,点到直线的距离为,
故的面积为.
综上所述,的面积为.
[方法四]:
由(1)知椭圆的方程为,.
不妨设在x轴上方,如图.
设直线.
因为,所以.
由点P在椭圆上得,所以.
由点P在直线上得,所以.所以,化简得.
所以,即.
所以,点Q到直线的距离.
又.
故.即的面积为.
[方法五]:
由对称性,不妨设P,Q在x轴上方,过P作轴,垂足为C,设,
由题知,所以.
(1).
则.
(其中).
(2).
同理,.
(其中)
综上,的面积为.
【整体点评】(2)方法一:根据平面几何知识可求得点的坐标,从而得出点的坐标以及直线的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求的面积,计算上有简化,是本题的最优解;方法三:通过设直线的方程与椭圆的方程联立,求出点的坐标,再根据题目等量关系求出的值,从而得出点的坐标以及直线的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线的方程,通过平面知识求出点的坐标,表示出点,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.
33.(1);(2)详见解析.
【分析】(1)由题意得到关于的方程组,求解方程组即可确定椭圆方程.
(2)方法一:设出点,的坐标,在斜率存在时设方程为, 联立直线方程与椭圆方程,根据已知条件,已得到的关系,进而得直线恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点的位置.
【详解】(1)由题意可得:,解得:,
故椭圆方程为:.
(2)[方法一]:通性通法
设点,
若直线斜率存在时,设直线的方程为:,
代入椭圆方程消去并整理得:,
可得,,
因为,所以,即,
根据,代入整理可得:
,
所以,
整理化简得,
因为不在直线上,所以,
故,于是的方程为,
所以直线过定点直线过定点.
当直线的斜率不存在时,可得,
由得:,
得,结合可得:,
解得:或(舍).
此时直线过点.
令为的中点,即,
若与不重合,则由题设知是的斜边,故,
若与重合,则,故存在点,使得为定值.
[方法二]【最优解】:平移坐标系
将原坐标系平移,原来的O点平移至点A处,则在新的坐标系下椭圆的方程为,设直线的方程为.将直线方程与椭圆方程联立得,即,化简得,即.
设,因为则,即.
代入直线方程中得.则在新坐标系下直线过定点,则在原坐标系下直线过定点.
又,D在以为直径的圆上.的中点即为圆心Q.经检验,直线垂直于x轴时也成立.
故存在,使得.
[方法三]:建立曲线系
A点处的切线方程为,即.设直线的方程为,直线的方程为,直线的方程为.由题意得.
则过A,M,N三点的二次曲线系方程用椭圆及直线可表示为(其中为系数).
用直线及点A处的切线可表示为(其中为系数).
即.
对比项、x项及y项系数得
将①代入②③,消去并化简得,即.
故直线的方程为,直线过定点.又,D在以为直径的圆上.中点即为圆心Q.
经检验,直线垂直于x轴时也成立.故存在,使得.
[方法四]:
设.
若直线的斜率不存在,则.
因为,则,即.
由,解得或(舍).
所以直线的方程为.
若直线的斜率存在,设直线的方程为,则.
令,则.
又,令,则.
因为,所以,
即或.
当时,直线的方程为.所以直线恒过,不合题意;
当时,直线的方程为,所以直线恒过.
综上,直线恒过,所以.
又因为,即,所以点D在以线段为直径的圆上运动.
取线段的中点为,则.
所以存在定点Q,使得为定值.
【整体点评】(2)方法一:设出直线方程,然后与椭圆方程联立,通过题目条件可知直线过定点,再根据平面几何知识可知定点即为的中点,该法也是本题的通性通法;
方法二:通过坐标系平移,将原来的O点平移至点A处,设直线的方程为,再通过与椭圆方程联立,构建齐次式,由韦达定理求出的关系,从而可知直线过定点,从而可知定点即为的中点,该法是本题的最优解;
方法三:设直线,再利用过点的曲线系,根据比较对应项系数可求出的关系,从而求出直线过定点,故可知定点即为的中点;
方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解以及的计算.
34.(1);(2)18.
【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;
(2)首先利用几何关系找到三角形面积最大时点N的位置,然后联立直线方程与椭圆方程,结合判别式确定点N到直线AM的距离即可求得三角形面积的最大值.
【详解】(1)由题意可知直线AM的方程为:,即.
当y=0时,解得,所以a=4,
椭圆过点M(2,3),可得,
解得b2=12.
所以C的方程:.
(2)设与直线AM平行的直线方程为:,
如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.
联立直线方程与椭圆方程,
可得:,
化简可得:,
所以,即m2=64,解得m=±8,
与AM距离比较远的直线方程:,
直线AM方程为:,
点N到直线AM的距离即两平行线之间的距离,
利用平行线之间的距离公式可得:,
由两点之间距离公式可得.
所以△AMN的面积的最大值:.
【点睛】解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
35.(Ⅰ);(Ⅱ)1.
【分析】(Ⅰ)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;
(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.
【详解】(Ⅰ)设椭圆方程为:,由题意可得:
,解得:,
故椭圆方程为:.
(Ⅱ)[方法一]:
设,,直线的方程为:,
与椭圆方程联立可得:,
即:,
则:.
直线MA的方程为:,
令可得:,
同理可得:.
很明显,且,注意到,
,
而
,
故.
从而.
[方法二]【最优解】:几何含义法
①当直线l与x轴重合,不妨设,由平面几何知识得,所以.
②当直线l不与x轴重合时,设直线,由题意,直线l不过和点,所以.设,联立得.由题意知,所以.且.
由题意知直线的斜率存在..
当时,
.
同理,.所以.
因为,所以.
【整体点评】方法一直接设直线的方程为:,联立方程消去y,利用韦达定理化简求解;方法二先对斜率为零的情况进行特例研究,在斜率不为零的情况下设直线方程为,联立方程消去x,直接利用韦达定理求得P,Q的纵坐标,运算更为简洁,应为最优解法.
36.(Ⅰ);(Ⅱ),或.
【分析】(Ⅰ)根据题意,并借助,即可求出椭圆的方程;
(Ⅱ)利用直线与圆相切,得到,设出直线的方程,并与椭圆方程联立,求出点坐标,进而求出点坐标,再根据,求出直线的斜率,从而得解.
【详解】(Ⅰ)椭圆的一个顶点为,
,
由,得,
又由,得,
所以,椭圆的方程为;
(Ⅱ)直线与以为圆心的圆相切于点,所以,
根据题意可知,直线和直线的斜率均存在,
设直线的斜率为,则直线的方程为,即,
,消去,可得,解得或.
将代入,得,
所以,点的坐标为,
因为为线段的中点,点的坐标为,
所以点的坐标为,
由,得点的坐标为,
所以,直线的斜率为,
又因为,所以,
整理得,解得或.
所以,直线的方程为或.
【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.
37.(Ⅰ);(Ⅱ)
【分析】(Ⅰ)求出抛物线标准方程,从而可得答案;
(Ⅱ)方法一使用韦达定理、中点公式和解方程法分别求得关于的表达式,得到关于的方程,利用基本不等式消去参数,得到关于的不等式,求解得到的最大值;方法二利用韦达定理和中点公式求得的坐标关于的表达式,根据点在椭圆上,得到关于关于的函数表达式,利用基本不等式和二次函数的性质得解,运算简洁,为最优解;方法三利用点差法得到.根据判别式大于零,得到不等式,通过解方程组求得,代入求解得到的最大值;方法四利用抛物线的参数方程设出点的参数坐标,利用斜率关系求得的坐标关于的表达式.作换元,利用点A在椭圆上,得到,然后利用二次函数的性质求得的最大值
【详解】(Ⅰ)当时,的方程为,故抛物线的焦点坐标为;
(Ⅱ)[方法一]:韦达定理基本不等式法
设,
由,
,
由在抛物线上,所以,
又,
,,
.
由即
,
所以,,,
所以,的最大值为,此时.
[方法二]【最优解】:
设直线,.
将直线的方程代入椭圆得:,
所以点的纵坐标为.
将直线的方程代入抛物线得:,
所以,解得,因此,
由解得,
所以当时,取到最大值为.
[方法三] :点差和判别式法
设,其中.
因为所以.
整理得,所以.
又,
所以,整理得.
因为存在,所以上述关于的二次方程有解,即判别式. ①
由得.
因此,将此式代入①式解得.
当且仅当点M的坐标为时,p的最大值为.
[方法四]:参数法
设,
由,得.
令,则,点A坐标代入椭圆方程中,得.
所以,此时M坐标为.
38.(1)6;(2)-4;(3)或.
【分析】(1)根据椭圆定义可得,从而可求出的周长;
(2)设,根据点在椭圆上,且在第一象限,,求出,根据准线方程得点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;
(3)方法一:设出,点到直线的距离为,由点到直线的距离与,可推出,根据点到直线的距离公式,以及满足椭圆方程,解方程组即可求得坐标.
【详解】(1)∵椭圆的方程为
∴,
由椭圆定义可得:.
∴的周长为;
(2)设,根据题意可得.
∵点在椭圆上,且在第一象限,,∴,
∵准线方程为,∴,
∴,当且仅当时取等号.
∴的最小值为.
(3)[方法一]:点到直线距离公式法
设,点到直线的距离为.
∵,,∴直线的方程为,即
∵点到直线的距离为,
又∵,∴,
∴,即即①或②,
又∵点M在椭圆③上,
联立①③解得,;联立②③,无解.
∴或.
[方法二]【最优解】:转化法
同方法一得到直线的方程,且M到直线AF1的距离为O到直线AF1的距离的3倍,由于F1(-1,0),O(0,0),∴点M在过(2,0)或(-4,0)且与直线AF1平行的直线上,即在直线①或直线②上,将①代入椭圆方程无解;将②代入椭圆方程并化简得,解得,分别代入②得,,∴或.
[方法三]:向量法
设直线交与N,由(1)可得直线的方程为.
由得(M,O在同侧)或(M,O在异侧).
当M为或,N为,不合题意;
当与x轴不垂直时,设直线的方程为,
与直线的方程联立解得.
若,则,
代入椭圆方程得,
解得或,此时或;
若,则,
代入椭圆方程中得,此方程无解.
综上所述,M点的坐标为或.
[方法四]:角参数法
同方法一得到直线的方程为.点到直线的距离.
设,则,
即.
若,即,无解;
若,即(*),
∴,其中,且可以限定为锐角.
∴∴,
∴
或,分别代入(*)得到或
故点M的坐标为或.
【整体点评】(3)的方法一,利用面积关系,得到点到直线的距离的值,利用点到直线的距离公式求得坐标满足的方程,与椭圆方程联立解得坐标;方法二抓住本题的特点,根据三角形面积的性质进行转化,得到M所在的直线方程,然后解方程组求解,运算最为简洁,是最优解;方法三更多地利用向量方法进行运算求解,要注意特殊情况的验证排除;方法四通过使用椭圆的角参数坐标,结合三角恒等变换公式求解得到.
39.(1);(2).
【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线的方程为,与抛物线方程联立,并利用韦达定理表示,并利用,求直线的斜率,验证后,即可得到直线方程.
【详解】解:(1)由椭圆可知,,
所以,,则,
因为抛物线的焦点为,可设抛物线方程为,
所以,即.
所以抛物线的标准方程为.
(2)由椭圆可知,,
若直线无斜率,则其方程为,经检验,不符合要求.
所以直线的斜率存在,设为,直线过点,
则直线的方程为,
设点,,
联立方程组,
消去,得.①
因为直线与抛物线有两个交点,
所以,即,
解得,且.
由①可知,
所以,
则,
因为,且,
所以,
解得或,
因为,且,
所以不符合题意,舍去,
所以直线的方程为,
即.
40.(1)见详解;(2) 3或.
【分析】(1)可设,,然后求出A,B两点处的切线方程,比如:,又因为也有类似的形式,从而求出带参数直线方程,最后求出它所过的定点.
(2)由(1)得带参数的直线方程和抛物线方程联立,再通过为线段的中点,得出的值,从而求出坐标和的值,分别为点到直线的距离,则,结合弦长公式和韦达定理代入求解即可.
【详解】(1)证明:设,,则.
又因为,所以.则切线DA的斜率为,
故,整理得.
设,同理得.
,都满足直线方程.
于是直线过点,而两个不同的点确定一条直线,所以直线方程为.即,
当时等式恒成立.所以直线恒过定点.
(2)
[方法一]【最优解:利用公共边结合韦达定理求面积】
设的中点为G,,则,,.
由,得,
将代入上式并整理得,
因为,所以或.
由(1)知,所以轴,
则(设).
当时,,即;
当时,,
即,.
综上,四边形的面积为3或.
[方法二]【利用弦长公式结合面积公式求面积】
设,由(1)知抛物线的焦点F的坐标为,准线方程为.由抛物线的定义,
得.
线段的中点为.
当时,轴,,
;
当时,,由,得,即.
所以,直线的方程为.
根据对称性考虑点和直线的方程即可.
E到直线的距离为,
D到直线的距离为.
所以.
综上,四边形的面积为3或.
[方法三]【结合抛物线的光学性质求面积】
图5中,由抛物线的光学性质易得,又,所以.
因为,,所以,
所以.
同理,所以,即点D为中点.
图6中已去掉坐标系和抛物线,并延长于点H.
因为,所以.
又因为G,D分别为的中点,所以,
故为平行四边形,从而.
因为且,所以I为的中点,
从而..
当直线平行于准线时,易得.
综上,四边形的面积为3或.
[方法四]【结合弦长公式和向量的运算求面积】
由(1)得直线的方程为.
由,可得,
于是
.
设分别为点到直线的距离,则.
因此,四边形ADBE的面积.
设M为线段AB的中点,则,
由于,而,与向量平行,所以,解得或.
当时,;当时
因此,四边形的面积为3或.
【整体点评】(2)方法一:利用公共边将一个三角形的面积分割为两个三角形的面积进行计算是一种常用且有效的方法;
方法二:面积公式是计算三角形面积的最基本方法;
方法三:平稳的光学性质和相似、全等三角形的应用要求几何技巧比较高,计算量较少;
方法四:弦长公式结合向量体现了数学知识的综合运用.
41.(1)详见解析(2)详见解析
【分析】(1)分别求出直线AM与BM的斜率,由已知直线AM与BM的斜率之积为−,可以得到等式,化简可以求出曲线C的方程,注意直线AM与BM有斜率的条件;
(2)(i)设出直线的方程,与椭圆方程联立,求出P,Q两点的坐标,进而求出点的坐标,求出直线的方程,与椭圆方程联立,利用根与系数关系求出的坐标,再求出直线的斜率,计算的值,就可以证明出是直角三角形;
(ii)由(i)可知三点坐标,是直角三角形,求出的长,利用面积公式求出的面积,利用导数求出面积的最大值.
【详解】(1)直线的斜率为,直线的斜率为,由题意可知:,所以曲线C是以坐标原点为中心,焦点在轴上,不包括左右两顶点的椭圆,其方程为;
(2)(i)
[方法一]【分别求得斜率的表达式利用斜率之积为即可证得题中的结论】
依题意设,
直线的斜率为,则,
所以.
又,所以,
进而有,即是直角三角形.
[方法二]【利用三点共线和点差法真的斜率之积为即可证得题中的结论】
由题意设,则.
因为Q,E,G三点共线,所以,
又因为点P,G在椭圆上,所以,
两式相减得,
所以,所以.
(ii)
[方法一]【求得面积函数,然后求导确定最值】
设,则直线的方程为,联立解得所以直线的方程为.联立直线的方程和椭圆C的方程,可得,则,所以.
令,即
.
注意到,得,所以在区间内单调递增,在区间内单调递减,所以当时,.
[方法二]【求得面积表达式,然后利用基本不等式求最值】
设面积为S.设直线的方程为,由题意可知,直线的方程与椭圆的方程联立,即解得P点的横坐标.再由直线的方程和椭圆的方程联立,即
得,由韦达定理得.
由弦长公式得,.
.
当且仅当即时,等号成立.
[方法三]【利用弦长公式结合韦达定理求得面积表达式,然后由基本不等式求最值】
设的中点为N,直线的斜率为k,则其方程为.
由解得.由(Ⅰ)得.直线的方程为,直线的方程为,联立得,.
又,从而,进而.以下同解法二.
【整体点评】(2)(i)方法一:斜率之积为是证明垂直的核心和关键;
方法二:利用三点共线和点差法使得问题的处理更加简单.
(ii)方法一:导数是求最值的一种重要方法,在求最值的时候几乎所有问题都可以考虑用导数求解;
方法二:基本不等式要注意一正二定三相等,缺一不可;
方法三:使用基本不等式的前提是构造解析式使得和或者乘积为定值.
42.(1);(2)或.
【分析】(1)方法一:根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;
(2)方法一:先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.
【详解】(1)[方法一]:【通性通法】焦点弦的弦长公式的应用
由题意得,设直线l的方程为.
设,由得.
,故.
所以.
由题设知,解得(舍去)或.因此l的方程为.
[方法二]:弦长公式的应用
由题意得,设直线l的方程为.
设,则由得.
,由,解得(舍去)或.因此直线l的方程为.
[方法三]:【最优解】焦点弦的弦长公式的应用
设直线l的倾斜角为,则焦点弦,解得,即.因为斜率,所以.
而抛物线焦点为,故直线l的方程为.
[方法四]:直线参数方程中的弦长公式应用
由题意知,可设直线l的参数方程为(t为参数).
代入整理得.
设两根为,则.
由,解得.
因为,所以,因此直线l的参数方程为
故直线l的普通方程为.
[方法五]:【最优解】极坐标方程的应用
以点F为极点,以x轴的正半轴为极轴建立极坐标系,此时抛物线的极坐标方程为.
设,由题意得,解得,即.
所以直线l的方程为.
(2)[方法一]:【最优解】利用圆的几何性质求方程
由(1)得AB的中点坐标为,所以AB的垂直平分线方程为
,即.
设所求圆的圆心坐标为,则
解得或,
因此所求圆的方程为或.
[方法二]:硬算求解
由题意可知,抛物线C的准线为,所求圆与准线相切.
设圆心为,则所求圆的半径为.
由得.
所以,
解得或,
所以,所求圆的方程为或.
【整体点评】(1)方法一:根据弦过焦点,选择焦点弦长公式运算,属于通性通法;
方法二:直接根据一般的弦长公式硬算,是解决弦长问题的一般解法;
方法三:根据弦过焦点,选择含直线倾斜角的焦点弦长公式,计算简单,属于最优解;
方法四:根据直线参数方程中的弦长公式,利用参数的几何意义运算;
方法五:根据抛物线的极坐标方程,利用极径的意义求解,计算简单,也是该题的最优解.
(2)方法一:根据圆的几何性质确定圆心位置,再根据直线与圆的位置关系算出,是求圆的方程的最优解;
方法二:直接根据圆经过两点,硬算,思想简单,运算相对复杂.
43.(1);(2).
【分析】(1)设直线:,,;根据抛物线焦半径公式可得;联立直线方程与抛物线方程,利用韦达定理可构造关于的方程,解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.
【详解】(1)设直线方程为:,,
由抛物线焦半径公式可知:
联立得:
则
,解得:
直线的方程为:,即:
(2)设,则可设直线方程为:
联立得:
则
,
,
则
【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.
44.(1)的方程为或;(2)证明见解析.
【分析】(1)根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程;
(2)方法一:分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.
【详解】(1)由已知得,的方程为.
由已知可得,点的坐标为或.
所以的方程为或.
(2)[方法一]:【通性通法】分类+常规联立
当与轴重合时,.
当与轴垂直时,为的垂直平分线,所以.
当与轴不重合也不垂直时,设的方程为,,
则,直线、的斜率之和为.
由得.
将代入得.
所以,.
则.
从而,故、的倾斜角互补,所以.
综上,.
[方法二]:角平分线定义的应用
当直线l与x轴重合或垂直时,显然有.当直线l与x轴不垂直也不重合时,设直线l的方程为,交椭圆于,.
由得.
由韦达定理得.
点A关于x轴的对称点,则直线的方程为.
令,,则直线过点M,.
[方法三]:直线参数方程的应用
设直线l的参数方程为(t为参数).(*)
将(*)式代入椭圆方程中,整理得.
则,.
又,则
,
即.所以.
[方法四]:【最优解】椭圆第二定义的应用
当直线l与x轴重合时,.
当直线l与x轴不重合时,如图6,过点A,B分别作准线的垂线,垂足分别为C,D,则有轴.
由椭圆的第二定义,有,,得,即.
由轴,有,即,于是,且.可得,即有.
[方法五]:角平分线定理逆定理+极坐标方程的应用
椭圆以右焦点为极点,x轴正方向为极轴,得.
设.
.
所以,.
由角平分线定理的逆定理可知,命题得证.
[方法六]:角平分线定理的逆定理的应用
设点O(也可选点F)到直线的距离分别为,根据角平分线定理的逆定理,要证,只需证.
当直线l的斜率为0时,易得.
当直线l的斜率不为0时,设直线l的方程为:.由方程组得恒成立,..
直线的方程为:.
因为点A在直线l上,所以,故.
同理,..
因为,所以,即.
综上,.
[方法七]:【通性通法】分类+常规联立
当直线l与x轴重合或垂直时,显然有.
当直线l与x轴不垂直也不重合时,设直线l的方程为,交椭圆于,.
由得.
由韦达定理得.
所以,
故、的倾斜角互补,所以.
[方法八]:定比点差法
设,,
所以,
由作差可得,,所以,
,又,所以,,
故,、的倾斜角互补,所以.
当时,与轴垂直,为的垂直平分线,所以.
故.
【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;
方法二:根据角平分线的定义可知,利用点关于轴的对称点在直线上,证直线过点即可;
方法三:利用直线的参数方程证明斜率互为相反数;
方法四:根据点M是椭圆的右准线与x轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;
方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择;
方法六:类比方法五,角平分线定理的逆定理的应用;
方法七:常规联立,同方法一,只是设直线的方程形式不一样;
方法八:定比点差法的应用.
45.(1)或;
(2)见解析.
【分析】(1)设,,根据,可知;由圆的性质可知圆心必在直线上,可设圆心;利用圆心到的距离为半径和构造方程,从而解出;(2)当直线斜率存在时,设方程为:,由圆的性质可知圆心必在直线上;假设圆心坐标,利用圆心到的距离为半径和构造方程,解出坐标,可知轨迹为抛物线;利用抛物线定义可知为抛物线焦点,且定值为;当直线斜率不存在时,求解出坐标,验证此时依然满足定值,从而可得到结论.
【详解】(1)在直线上 设,则
又 ,解得:
过点, 圆心必在直线上
设,圆的半径为
与相切
又,即
,解得:或
当时,;当时,
的半径为:或
(2)存在定点,使得
说明如下:
,关于原点对称且
直线必为过原点的直线,且
①当直线斜率存在时,设方程为:
则的圆心必在直线上
设,的半径为
与相切
又
,整理可得:
即点轨迹方程为:,准线方程为:,焦点
,即抛物线上点到的距离
当与重合,即点坐标为时,
②当直线斜率不存在时,则直线方程为:
在轴上,设
,解得:,即
若,则
综上所述,存在定点,使得为定值.
【点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.
46.(1);(2)证明见解析,公差为或.
【分析】(1)方法一:设而不求,利用点差法进行证明.
(2)方法一:解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,,得到直线的方程,联立直线与椭圆方程由韦达定理进行求解.
【详解】(1)[方法一]:【最优解】点差法
设,则.
两式相减,并由得,
由题设知,于是.①
由题设得,故.
[方法二]:【通性通法】常规设线
设,,当时,显然不满足题意;
由得,,所以,,
,即,而,所以,
又,所以,
,即,解得: .
[方法三]:直线与椭圆系的应用
对原椭圆作关于对称的椭圆为.
两椭圆方程相减可得,即为的方程,故.
又点在椭圆C内部可得,解得:.
所以.
[方法四]:直线参数方程的应用
设l的参数方程为(为l倾斜角,t为参数)代入椭圆C中得.设是线段中点A,B对应的参数,是线段中点,知得,即.而点在C内得,解得:,所以.
(2)[方法一]:【通性通法】常规运算+整体思想
由题意得,设,则
.
由(1)及题设得.
又点P在C上,所以,从而,.
于是.
同理,所以.
故,即,,成等差数列.
设该数列的公差为d,则
.②
将代入①得.
所以l的方程为,代入C的方程,并整理得.
故,代入②解得.
所以该数列的公差为或.
[方法二]:硬算
由,知点F为的重心,由三角形重心坐标公式可得,即.
由点P在椭圆上,把坐标代入方程解得,即.
由(1)有,直线l的方程为,将其与椭圆方程联立消去y得,求得,不妨设,所以,,,同理可得,
,所以,而,故.
即该数列的公差为或.
[方法三]:【最优解】焦半径公式的应用
因为线段的中点为,得.
由,知点F为的重心,由三角形重心坐标公式可得,
由椭圆方程可知,
由椭圆的焦半径公式得,.所以.
由方法二硬算可得,或,从而公差为,即该数列的公差为或.
【整体点评】(1)方法一:利用点差法找出斜率与中点坐标的关系,再根据中点在椭圆内得到不等关系,即可解出,对于中点问题,点差法是解决此类问题的常用解法,也是该题的最优解;
方法二:常规设线,通过联立得出根与系数的关系(韦达定理),再根据即可证出,该法是解决直线与圆锥曲线位置关系的通性通法.
方法三:;类比直线与圆系,采用直线与椭圆系的应用,可快速求出公共弦所在直线方程,从而得出斜率,进而得证,避免联立过程,适当简化运算;
方法四:利用直线的参数方程以及参数的几何意义,联立求出斜率;
(2)方法一:直接根据题意运算结合整体思想,是通性通法;
方法二:直接硬算,思路直接,计算量较大;
方法三:利用焦半径公式简化运算,是该题的最优解.
47.(1) ;(2),a的取值范围为.
【分析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;
(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.
【详解】(1)连结,由为等边三角形可知:
在中,,,,
于是,
故椭圆C的离心率为;
(2)[方法一]【椭圆的定义+基本不等式】
由题意可知,且,所以.
因为,所以.
又因为,且,所以,从而,故,所以,a的取值范围为.
[方法二]【最优解:椭圆的定义+余弦定理】
由题意有则,即,
当且仅当时,等号成立.
此时P为短轴端点,,且满足.
即当时,存在点P,使得,且的面积等于16.
故,a的取值范围为.
[方法三]【余弦定理+面积公式】
设,对椭圆上任一点P,设,
由余弦定理有,所以,
即.则.
又,即.
由于,则以O为圆心,为直径的圆必与椭圆C有公共点,
即半焦距,故.
综上,,a的取值范围为.
【点睛】(2)方法一:椭圆的定义是解决焦点三角形的核心,基本不等式是处理最值与范围问题的常用方法;
方法二:椭圆的定义和余弦定理相结合是处理焦点三角形最典型的方法;
方法三:余弦定理和面积公式是处理面积问题的经典方法,处理最值、范围问题时常用此方法.
48.(Ⅰ);
(Ⅱ)见解析.
【分析】(Ⅰ)由题意确定a,b的值即可确定椭圆方程;
(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM,ON的表达式,结合韦达定理确定t的值即可证明直线恒过定点.
【详解】(Ⅰ)因为椭圆的右焦点为,所以;
因为椭圆经过点,所以,所以,故椭圆的方程为.
(Ⅱ)设
联立得,
,,.
直线,令得,即;
同理可得.
因为,所以;
,解之得,所以直线方程为,所以直线恒过定点.
【点睛】解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
49.(1)或;(2)证明见解析.
【分析】(1)根据题意可得直线的方程为,从而得出点的坐标为或,利用两点式求得直线的方程;
(2)方法一:设直线的方程为,点、,将直线的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线、的斜率之和为零,从而得出所证结论成立.
【详解】(1)当与轴垂直时,的方程为,可得的坐标为或.
所以直线的方程为或;
(2)[方法一]:【通性通法】韦达定理+斜率公式
设的方程为,、,
由,得,可知,.
直线、的斜率之和为
,
所以,可知、的倾斜角互补,所以.
[方法2]:【最优解】斜率公式+三点共线的坐标表示
因为M,N在抛物线上,可设,,故,.而A,M,N共线,故,即,化简得.而M,N是不同的点,故,可得.这样.故.
【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;
方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解.
50.(Ⅰ)(Ⅱ)或.
【分析】(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;
(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.
【详解】(Ⅰ) 设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.
所以,椭圆方程为.
(Ⅱ)由题意,设.设直线的斜率为,
又,则直线的方程为,与椭圆方程联立,
整理得,可得,
代入得,
进而直线的斜率,
在中,令,得.
由题意得,所以直线的斜率为.
由,得,
化简得,从而.
所以,直线的斜率为或.
【点睛】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.
51.(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)
(2)证明过程见解析
【详解】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l的斜率的取值范围,最后根据PA,PB与y轴相交,舍去k=3,(2)先设A(x1,y1),B(x2,y2),与抛物线联立,根据韦达定理可得,.再由,得,.利用直线PA,PB的方程分别得点M,N的纵坐标,代入化简可得结论.
详解:解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),
所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
由题意可知直线l的斜率存在且不为0,
设直线l的方程为y=kx+1(k≠0).
由得.
依题意,解得k<0或0
所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)设A(x1,y1),B(x2,y2).
由(I)知,.
直线PA的方程为.
令x=0,得点M的纵坐标为.
同理得点N的纵坐标为.
由,得,.
所以.
所以为定值.
点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.
52.(1)证明见解析;(2)证明见解析.
【分析】(1)设而不求,利用点差法,或设直线方程,联立方程组,由判别式和韦达定理进行证明;
(2)方法一:先求出点P的坐标,解出m,得到直线的方程,联立直线与椭圆方程由韦达定理进行求解.
【详解】(1)[方法一]:【最优解】点差法
设,,则,.
两式相减,并由得.
由题设知,,于是.
由题设知点在椭圆内部,所以,故.
[方法二]:【通性通法】常规设线
设,,当时,显然不满足题意;
由得,,所以,,
,即,而,所以,
又,所以,
,即,解得: .
[方法三]:直线与椭圆系的应用
对原椭圆作关于对称的椭圆为.
两椭圆方程相减可得,即为的方程,故.
又点在椭圆C内部可得,解得:.
所以.
[方法四]:直线参数方程的应用
设l的参数方程为(为l倾斜角,t为参数)代入椭圆C中得.设是线段中点A,B对应的参数,是线段中点,知得,即.而点在C内得,解得:,所以.
(2)[方法一]:【通性通法】常规运算+整体思想
由题意得,设,则
.
由(1)及题设得,.
又点P在C上,所以,从而,.
于是.
同理.所以.故.
[方法二]:硬算
由,知点F为的重心,由三角形重心坐标公式可得,即.
由点P在椭圆上,把坐标代入方程解得,即.
由(1)有,直线l的方程为,将其与椭圆方程联立消去y得,求得,不妨设,所以,,,同理可得,
,所以,而,故.
[方法三]:【最优解】焦半径公式的应用
因为线段的中点为,得.
由,知点F为的重心,由三角形重心坐标公式可得,
由椭圆方程可知,
由椭圆的焦半径公式得,.所以.
【整体点评】(1)方法一:利用点差法找出斜率与中点坐标的关系,再根据中点在椭圆内得到不等关系,即可解出,对于中点问题,点差法是解决此类问题的常用解法,也是该题的最优解;
方法二:常规设线,通过联立得出根与系数的关系(韦达定理),再根据即可解出,该法是解决直线与圆锥曲线位置关系的通性通法;
方法三:;类比直线与圆系,采用直线与椭圆系的应用,可快速求出公共弦所在直线方程,从而得出斜率,进而得证,避免联立过程,适当简化运算;
方法四:利用直线的参数方程以及参数的几何意义,联立求出斜率;
(2)方法一:直接根据题意运算结合整体思想,是通性通法;
方法二:直接硬算,思路直接,计算量较大,一般不建议使用;
方法三:根据所求式子特证,利用焦半径公式,很好的简化运算,是该题的最优解.
53.(1);(2).
【详解】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.
(II)设点P的坐标为,点M的坐标为 ,由题意可得.
易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.
详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.
所以,椭圆的方程为.
(II)设点P的坐标为,点M的坐标为,由题意,,
点的坐标为.由的面积是面积的2倍,可得,
从而,即.
易知直线的方程为,由方程组消去y,可得.由方程组消去,可得.由,可得,两边平方,整理得,解得,或.
当时,,不合题意,舍去;当时,,,符合题意.
所以,的值为.
点睛:解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
54.(Ⅰ);(Ⅱ)或
【详解】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或
详解:(Ⅰ)设椭圆的焦距为2c,由已知有,
又由a2=b2+c2,可得2a=3b.由已知可得,,,
由,可得ab=6,从而a=3,b=2.
所以,椭圆的方程为.
(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).
由已知有y1>y2>0,故.
又因为,而∠OAB=,故.
由,可得5y1=9y2.
由方程组消去x,可得.
易知直线AB的方程为x+y–2=0,
由方程组消去x,可得.
由5y1=9y2,可得5(k+1)=,
两边平方,整理得,
解得,或.
所以,k的值为或
点睛:解决直线与椭圆的综合问题时,要注意:
(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;
(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.
55.(Ⅰ);(Ⅱ);(Ⅲ).
【分析】(Ⅰ)根据题干可得的方程组,求解的值,代入可得椭圆方程;
(Ⅱ)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;
(Ⅲ)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.
【详解】(Ⅰ)由题意得,所以,
又,所以,所以,
所以椭圆的标准方程为;
(Ⅱ)设直线的方程为,
由消去可得,
则,即,
设,,则,,
则,
易得当时,,故的最大值为;
(Ⅲ)设,,,,
则 ①, ②,
又,所以可设,直线的方程为,
由消去可得,
则,即,
又,代入①式可得,所以,
所以,同理可得.
故,,
因为三点共线,所以,
将点的坐标代入化简可得,即.
【点睛】本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.
56.(I);(II).
【分析】(I)根据题意得到,结合椭圆中的关系,得到,化简得出,从而求得其离心率;
(II)结合(I)的结论,设出椭圆的方程,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得,从而得到椭圆的方程.
【详解】(I)解:设椭圆的半焦距为,由已知有,
又由,消去得,解得,
所以,椭圆的离心率为.
(II)解:由(I)知,,故椭圆方程为,
由题意,,则直线的方程为,
点的坐标满足,消去并化简,得到,
解得,
代入到的方程,解得,
因为点在轴的上方,所以,
由圆心在直线上,可设,因为,
且由(I)知,故,解得,
因为圆与轴相切,所以圆的半径为2,
又由圆与相切,得,解得,
所以椭圆的方程为:.
【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.
57.(Ⅰ)证明见解析;(Ⅱ).
【分析】(Ⅰ)方法一:设P,A,B的纵坐标分别为,根据中点坐标公式得PA,PB的中点坐标,代入抛物线方程,可得,即得结论;
(Ⅱ)方法一:由(Ⅰ)可得△PAB面积为,利用根与系数的关系可表示为的函数,根据半椭圆范围以及二次函数性质确定面积取值范围.
【详解】(Ⅰ)[方法一]:【通性通法】点参法
设,,.
因为,的中点在抛物线上,所以,为方程
,即的两个不同的实数根.
所以.即点的纵坐标为,因此,垂直于轴.
[方法二]:常规设线+中位线定理
设的中点分别为E,F,交于N,设,
设直线.
则由.
同理可得,即轴,得证.
[方法三]: 抛物线的平行弦性质
设线段的中点为D,E,线段的中点为N.
易得直线过点P,事实上,直线是抛物线平行弦的中点轨迹所在直线.
由“抛物线平行弦的轨迹为平行或重合于抛物线对称轴的射线”可知,垂直于y轴.
(Ⅱ)[方法一]:【通性通法】点参法
由(Ⅰ)可知,
所以,.
因此,的面积.
因为,所以.
因此,面积的取值范围是.
[方法二]: 椭圆的参数方程+抛物线中点弦性质
设线段的中点分别为D,E,线段的中点为N.
设,则,.
由抛物线弦中点性质,可设直线.
联立直线与抛物线方程易得,,
由得,.
由点N为线段的中点可得.
于是有.
从而面积
.
而,因此.
[方法三]: 反设直线
设直线.
由得关于y的方程的两个不同的根分别为,于是由韦达定理得,所以.
又,所以.
由①知,所以,即.
因此
.
点P到直线的距离.
所以的面积为,令,则,.
所以.
故面积的取值范图是.
【整体点评】(Ⅰ)方法一:直接设点,,利用中点公式求出的中点坐标,由点在抛物线上,得到同构方程,利用韦达定理证出,是该题的通性通法;
方法二:利用平面几何知识中位线定理,以及直线与抛物线的位置关系,常规设线,根据韦达定理证出;
方法三:利用抛物线的二级结论,“抛物线平行弦的轨迹为平行或重合于抛物线对称轴的射线”证出,该法适用于判断结论.
(Ⅱ)方法一:用点的纵坐标作参数,表示出面积,根据函数的值域求法解出,属于通性通法;
方法二:根据椭圆的参数方程以及抛物线的弦中点性质,用三角函数表示出面积,再由三角函数和二次函数的性质解出;
方法三:反设直线,通过直线与抛物线联立,用表示出弦长以及面积,根据函数形式,换元化简成二次函数解出.
58.(1)2,;(2),.
【分析】(1)由焦点坐标确定p的值和准线方程即可;
(2)设出直线方程,联立直线方程和抛物线方程,结合韦达定理求得面积的表达式,最后结合均值不等式的结论即可求得的最小值和点G的坐标.
【详解】(1)由题意可得,则,抛物线方程为,准线方程为.
(2)设,
设直线AB的方程为,与抛物线方程联立可得:
,故:,
,
设点C的坐标为,由重心坐标公式可得:
,,
令可得:,则.即,
由斜率公式可得:,
直线AC的方程为:,
令可得:,
故,
且,
由于,代入上式可得:,
由可得,则,
则
.
当且仅当,即,时等号成立.
此时,,则点G的坐标为.
【点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系,本题主要考查了抛物线准线方程的求解,直线与抛物线的位置关系,三角形重心公式的应用,基本不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.
59.(1);
(2).
【分析】(1)由题意分别求得a,b的值即可确定椭圆方程;
(2)解法一:由题意首先确定直线的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;
解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.
【详解】(1)设椭圆C的焦距为2c.
因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.
又因为DF1=,AF2⊥x轴,所以DF2=,
因此2a=DF1+DF2=4,从而a=2.
由b2=a2-c2,得b2=3.
因此,椭圆C的标准方程为.
(2)解法一:
由(1)知,椭圆C:,a=2,
因为AF2⊥x轴,所以点A的横坐标为1.
将x=1代入圆F2的方程(x-1) 2+y2=16,解得y=±4.
因为点A在x轴上方,所以A(1,4).
又F1(-1,0),所以直线AF1:y=2x+2.
由,得,
解得或.
将代入,得,
因此.又F2(1,0),所以直线BF2:.
由,得,解得或.
又因为E是线段BF2与椭圆的交点,所以.
将代入,得.因此.
解法二:
由(1)知,椭圆C:.如图,连结EF1.
因为BF2=2a,EF1+EF2=2a,所以EF1=EB,
从而∠BF1E=∠B.
因为F2A=F2B,所以∠A=∠B,
所以∠A=∠BF1E,从而EF1∥F2A.
因为AF2⊥x轴,所以EF1⊥x轴.
因为F1(-1,0),由,得.
又因为E是线段BF2与椭圆的交点,所以.
因此.
【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.
60.(1),;(2)①;②.
【分析】(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;
(2)方法一:①先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标;②先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.
【详解】(1)因为椭圆C的焦点为,
可设椭圆C的方程为.又点在椭圆C上,
所以,解得
因此,椭圆C的方程为.
因为圆O的直径为,所以其方程为.
(2)[方法一]:【通性通法】代数法硬算
①设直线l与圆O相切于,则,
所以直线l的方程为,即.
由,消去y,得(*),
因为直线l与椭圆C有且只有一个公共点,
所以.
因为,所以,因此,点P的坐标为.
②因为三角形OAB的面积为,所以,从而.
设,由(*)得,
所以.
因为,所以,即,
解得舍去),则,因此P的坐标为.
综上,直线l的方程为.
[方法二]: 圆的参数方程的应用
设P点坐标为.
因为原点到直线的距离,所以与圆O切于点P的直线l的方程为.
由消去y,得.
①因为直线l与椭圆相切,所以.
因为,所以,故,.
所以,P点坐标为.
②因为直线与圆O相切,所以中边上的高,因为的面积为,所以.
设,由①知
,
即,
即.
因为,所以,故,所以.
所以直线l的方程为.
[方法三]:直线参数方程与圆的参数方程的应用
设P点坐标为,则与圆O切于点P的直线l的参数方程为:(t为参数),
即(t为参数).
代入,得关于t的一元二次方程.
①因为直线l与椭圆相切,所以,,
因为,所以,故,.
所以,P点坐标为.
②同方法二,略.
【整体点评】(2)方法一:①直接利用直线与圆的位置关系,直线与椭圆的位置关系代数法硬算,即可解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标,是该题的通性通法;
方法二:①利用圆的参数方程设出点,进而表示出直线方程,根据直线与椭圆的位置关系解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标;
方法三:①利用圆的参数方程设出点,将直线的参数方程表示出来,根据直线与椭圆的位置关系解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标.
22-平面解析几何(圆锥曲线之双曲线)-五年(2018-2022)高考数学真题按知识点分类汇编: 这是一份22-平面解析几何(圆锥曲线之双曲线)-五年(2018-2022)高考数学真题按知识点分类汇编,共28页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
21-平面解析几何(圆锥曲线之椭圆)-五年(2018-2022)高考数学真题按知识点分类汇编: 这是一份21-平面解析几何(圆锥曲线之椭圆)-五年(2018-2022)高考数学真题按知识点分类汇编,共46页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
19-平面解析几何(直线与方程)-五年(2018-2022)高考数学真题按知识点分类汇编: 这是一份19-平面解析几何(直线与方程)-五年(2018-2022)高考数学真题按知识点分类汇编,共22页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。