4-指数函数、对数函数、幂函数-五年(2018-2022)高考数学真题按知识点分类汇编
展开一、单选题
1.(2022·天津·统考高考真题)化简的值为( )
A.1B.2C.4D.6
2.(2022·天津·统考高考真题)已知,,,则( )
A.B.C.D.
3.(2022·浙江·统考高考真题)已知,则( )
A.25B.5C.D.
4.(2022·全国·统考高考真题)已知,则( )
A.B.C.D.
5.(2022·北京·统考高考真题)已知函数,则对任意实数x,有( )
A.B.
C.D.
6.(2022·北京·统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A.当,时,二氧化碳处于液态
B.当,时,二氧化碳处于气态
C.当,时,二氧化碳处于超临界状态
D.当,时,二氧化碳处于超临界状态
7.(2022·全国·统考高考真题)设,则( )
A.B.C.D.
8.(2021·天津·统考高考真题)设,则a,b,c的大小关系为( )
A.B.C.D.
9.(2021·天津·统考高考真题)若,则( )
A.B.C.1D.
10.(2021·天津·统考高考真题)函数的图像大致为( )
A.B.
C.D.
11.(2021·全国·统考高考真题)已知,,,则下列判断正确的是( )
A.B.C.D.
12.(2021·全国·统考高考真题)设,,.则( )
A.B.C.D.
13.(2021·全国·高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )()
A.1.5B.1.2C.0.8D.0.6
14.(2021·全国·统考高考真题)下列函数中最小值为4的是( )
A.B.
C.D.
15.(2020·山东·统考高考真题)函数的定义域是( )
A.B.C.D.
16.(2020·山东·统考高考真题)已知函数是偶函数,当时,,则该函数在上的图像大致是( )
A.B.
C.D.
17.(2020·海南·高考真题)已知函数在上单调递增,则的取值范围是( )
A.B.C.D.
18.(2020·天津·统考高考真题)设,则的大小关系为( )
A.B.C.D.
19.(2020·全国·统考高考真题)若,则( )
A.B.C.D.
20.(2020·全国·统考高考真题)已知55<84,134<85.设a=lg53,b=lg85,c=lg138,则( )
A.a21.(2020·全国·统考高考真题)Lgistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Lgistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为( )(ln19≈3)
A.60B.63C.66D.69
22.(2020·全国·统考高考真题)设,,,则( )
A.B.C.D.
23.(2020·全国·统考高考真题)设,则( )
A.B.C.D.
24.(2020·全国·统考高考真题)设函数,则f(x)( )
A.是偶函数,且在单调递增B.是奇函数,且在单调递减
C.是偶函数,且在单调递增D.是奇函数,且在单调递减
25.(2019·全国·高考真题)已知,则
A.B.C.D.
26.(2019·全国·高考真题)若a>b,则
A.ln(a−b)>0B.3a<3b
C.a3−b3>0D.│a│>│b│
27.(2019·北京·高考真题)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
A.1010.1B.10.1C.lg10.1D.
28.(2019·天津·高考真题)已知,,,则的大小关系为
A.B.
C.D.
29.(2019·天津·高考真题)已知,,,则的大小关系为
A.B.
C.D.
30.(2018·天津·高考真题)已知,,,则a,b,c的大小关系为
A.B.C.D.
31.(2018·全国·高考真题)设,,则
A.B.
C.D.
32.(2018·全国·高考真题)下列函数中,其图像与函数的图像关于直线对称的是
A.B.C.D.
33.(2018·天津·高考真题)已知,则的大小关系为
A.B.C.D.
二、多选题
34.(2020·海南·统考高考真题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
三、填空题
35.(2020·山东·统考高考真题)若,则实数的值是______.
36.(2020·北京·统考高考真题)函数的定义域是____________.
37.(2020·江苏·统考高考真题)已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是____.
38.(2018·全国·高考真题)已知函数,若,则________.
四、双空题
39.(2022·全国·统考高考真题)若是奇函数,则_____,______.
参考答案:
1.B
【分析】根据对数的性质可求代数式的值.
【详解】原式
,
故选:B
2.C
【分析】利用幂函数、对数函数的单调性结合中间值法可得出、、的大小关系.
【详解】因为,故.
故答案为:C.
3.C
【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.
【详解】因为,,即,所以.
故选:C.
4.A
【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.
【详解】[方法一]:(指对数函数性质)
由可得,而,所以,即,所以.
又,所以,即,
所以.综上,.
[方法二]:【最优解】(构造函数)
由,可得.
根据的形式构造函数 ,则,
令,解得 ,由 知 .
在 上单调递增,所以 ,即 ,
又因为 ,所以 .
故选:A.
【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;
法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.
5.C
【分析】直接代入计算,注意通分不要计算错误.
【详解】,故A错误,C正确;
,不是常数,故BD错误;
故选:C.
6.D
【分析】根据与的关系图可得正确的选项.
【详解】当,时,,此时二氧化碳处于固态,故A错误.
当,时,,此时二氧化碳处于液态,故B错误.
当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.
当,时,因, 故此时二氧化碳处于超临界状态,故D正确.
故选:D
7.C
【分析】构造函数, 导数判断其单调性,由此确定的大小.
【详解】方法一:构造法
设,因为,
当时,,当时,
所以函数在单调递减,在上单调递增,
所以,所以,故,即,
所以,所以,故,所以,
故,
设,则,
令,,
当时,,函数单调递减,
当时,,函数单调递增,
又,
所以当时,,
所以当时,,函数单调递增,
所以,即,所以
故选:C.
方法二:比较法
解: , , ,
① ,
令
则 ,
故 在 上单调递减,
可得 ,即 ,所以 ;
② ,
令
则 ,
令 ,所以 ,
所以 在 上单调递增,可得 ,即 ,
所以 在 上单调递增,可得 ,即 ,所以
故
8.D
【分析】根据指数函数和对数函数的性质求出的范围即可求解.
【详解】,,
,,
,,
.
故选:D.
9.C
【分析】由已知表示出,再由换底公式可求.
【详解】,,
.
故选:C.
10.B
【分析】由函数为偶函数可排除AC,再由当时,,排除D,即可得解.
【详解】设,则函数的定义域为,关于原点对称,
又,所以函数为偶函数,排除AC;
当时, ,所以,排除D.
故选:B.
11.C
【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.
【详解】,即.
故选:C.
12.B
【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)=0即可得出a与c,b与c的大小关系.
【详解】[方法一]:
,
所以;
下面比较与的大小关系.
记,则,,
由于
所以当0
所以,即,即;
令,则,,
由于,在x>0时,,
所以,即函数在[0,+∞)上单调递减,所以,即,即b
故选:B.
[方法二]:
令
,即函数在(1,+∞)上单调递减
令
,即函数在(1,3)上单调递增
综上,,
故选:B.
【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.
13.C
【分析】根据关系,当时,求出,再用指数表示,即可求解.
【详解】由,当时,,
则.
故选:C.
14.C
【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意.
【详解】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.
故选:C.
【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.
15.B
【分析】根据题意得到,再解不等式组即可.
【详解】由题知:,解得且.
所以函数定义域为.
故选:B
16.B
【分析】根据偶函数,指数函数的知识确定正确选项.
【详解】当时,,所以在上递减,
是偶函数,所以在上递增.
注意到,
所以B选项符合.
故选:B
17.D
【分析】首先求出的定义域,然后求出的单调递增区间即可.
【详解】由得或
所以的定义域为
因为在上单调递增
所以在上单调递增
所以
故选:D
【点睛】在求函数的单调区间时一定要先求函数的定义域.
18.D
【分析】利用指数函数与对数函数的性质,即可得出的大小关系.
【详解】因为,
,
,
所以.
故选:D.
【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.
比较指对幂形式的数的大小关系,常用方法:
(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;
(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;
(3)借助于中间值,例如:0或1等.
19.A
【分析】将不等式变为,根据的单调性知,以此去判断各个选项中真数与的大小关系,进而得到结果.
【详解】由得:,
令,
为上的增函数,为上的减函数,为上的增函数,
,
,,,则A正确,B错误;
与的大小不确定,故CD无法确定.
故选:A.
【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想.
20.A
【分析】由题意可得、、,利用作商法以及基本不等式可得出、的大小关系,由,得,结合可得出,由,得,结合,可得出,综合可得出、、的大小关系.
【详解】由题意可知、、,,;
由,得,由,得,,可得;
由,得,由,得,,可得.
综上所述,.
故选:A.
【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.
21.C
【分析】将代入函数结合求得即可得解.
【详解】,所以,则,
所以,,解得.
故选:C.
【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.
22.A
【分析】分别将,改写为,,再利用单调性比较即可.
【详解】因为,,
所以.
故选:A.
【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.
23.B
【分析】根据已知等式,利用指数对数运算性质即可得解
【详解】由可得,所以,
所以有,
故选:B.
【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.
24.D
【分析】根据奇偶性的定义可判断出为奇函数,排除AC;当时,利用函数单调性的性质可判断出单调递增,排除B;当时,利用复合函数单调性可判断出单调递减,从而得到结果.
【详解】由得定义域为,关于坐标原点对称,
又,
为定义域上的奇函数,可排除AC;
当时,,
在上单调递增,在上单调递减,
在上单调递增,排除B;
当时,,
在上单调递减,在定义域内单调递增,
根据复合函数单调性可知:在上单调递减,D正确.
故选:D.
【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据与的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.
25.B
【分析】运用中间量比较,运用中间量比较
【详解】则.故选B.
【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.
26.C
【分析】本题也可用直接法,因为,所以,当时,,知A错,因为是增函数,所以,故B错;因为幂函数是增函数,,所以,知C正确;取,满足,,知D错.
【详解】取,满足,,知A错,排除A;因为,知B错,排除B;取,满足,,知D错,排除D,因为幂函数是增函数,,所以,故选C.
【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.
27.A
【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.
【详解】两颗星的星等与亮度满足,令,
.
故选A.
【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.
28.A
【分析】利用利用等中间值区分各个数值的大小.
【详解】;
;
.
故.
故选A.
【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待.
29.A
【解析】利用等中间值区分各个数值的大小.
【详解】,
,
,故,
所以.
故选A.
【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.
30.D
【详解】分析:由题意结合对数函数的性质整理计算即可求得最终结果.
详解:由题意结合对数函数的性质可知:
,,,
据此可得:.
本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
31.B
【详解】分析:求出,得到的范围,进而可得结果.
详解:.
,即
又
即
故选B.
点睛:本题主要考查对数的运算和不等式,属于中档题.
32.B
【详解】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可.
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点.
故选项B正确
点睛:本题主要考查函数的对称性和函数的图像,属于中档题.
33.D
【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.
详解:由题意可知:,即,,即,
,即,综上可得:.本题选择D选项.
点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.
34.AC
【分析】对于A选项,求得,由此判断出A选项;对于B选项,利用特殊值法进行排除;对于C选项,计算出,利用对数函数的性质可判断出C选项;对于D选项,计算出 ,利用基本不等式和对数函数的性质判断出D选项.
【详解】对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,
所以,
当时,,
当时,,
两者相等,所以B选项错误.
对于C选项,若,则
,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且 ( ).
.
由于,所以 ,所以 ,
所以,
所以,所以D选项错误.
故选:AC
【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.
35.
【分析】根据对数运算化简为,求解的值.
【详解】,
即,解得:.
故答案为:
36.
【分析】根据分母不为零、真数大于零列不等式组,解得结果.
【详解】由题意得,
故答案为:
【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.
37.
【分析】先求,再根据奇函数求
【详解】,因为为奇函数,所以
故答案为:
【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.
38.-7
【详解】分析:首先利用题的条件,将其代入解析式,得到,从而得到,从而求得,得到答案.
详解:根据题意有,可得,所以,故答案是.
点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.
39. ; .
【分析】根据奇函数的定义即可求出.
【详解】[方法一]:奇函数定义域的对称性
若,则的定义域为,不关于原点对称
若奇函数的有意义,则且
且,
函数为奇函数,定义域关于原点对称,
,解得,
由得,,
,
故答案为:;.
[方法二]:函数的奇偶性求参
函数为奇函数
[方法三]:
因为函数为奇函数,所以其定义域关于原点对称.
由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.
故答案为:;.
27-概率-五年(2018-2022)高考数学真题按知识点分类汇编: 这是一份27-概率-五年(2018-2022)高考数学真题按知识点分类汇编,共27页。试卷主要包含了单选题,填空题,解答题,双空题等内容,欢迎下载使用。
25-统计-五年(2018-2022)高考数学真题按知识点分类汇编: 这是一份25-统计-五年(2018-2022)高考数学真题按知识点分类汇编,共33页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
12-数列求和-五年2018-2022高考数学真题按知识点分类汇编: 这是一份12-数列求和-五年2018-2022高考数学真题按知识点分类汇编,共27页。试卷主要包含了单选题,填空题,解答题,双空题等内容,欢迎下载使用。