搜索
    上传资料 赚现金
    英语朗读宝

    全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)

    全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)第1页
    全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)第2页
    全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)第3页
    还剩46页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)

    展开

    这是一份全国各地五年 高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题),共49页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
    五年高考物理真题按知识点分类汇编26-电磁感应中的能量转化问题(导体棒在导轨上的运动问题)(含解析)

    一、单选题
    1.(2022·重庆·高考真题)如图1所示,光滑的平行导电轨道水平固定在桌面上,轨道间连接一可变电阻,导体杆与轨道垂直并接触良好(不计杆和轨道的电阻),整个装置处在垂直于轨道平面向上的匀强磁场中。杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,两次运动中拉力大小与速率的关系如图2所示。其中,第一次对应直线①,初始拉力大小为F0,改变电阻阻值和磁感应强度大小后,第二次对应直线②,初始拉力大小为2F0,两直线交点的纵坐标为3F0。若第一次和第二次运动中的磁感应强度大小之比为k、电阻的阻值之比为m、杆从静止开始运动相同位移的时间之比为n,则k、m、n可能为(   )

    A.k = 2、m = 2、n = 2 B.
    C. D.
    2.(2021·河北·高考真题)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B,导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点,狭缝右侧两导轨与x轴夹角均为,一电容为C的电容器与导轨左端相连,导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻,下列说法正确的是(  )

    A.通过金属棒的电流为
    B.金属棒到达时,电容器极板上的电荷量为
    C.金属棒运动过程中,电容器的上极板带负电
    D.金属棒运动过程中,外力F做功的功率恒定
    3.(2021·北京·高考真题)如图所示,在竖直向下的匀强磁场中,水平U型导体框左端连接一阻值为R的电阻,质量为m、电阻为r的导体棒ab置于导体框上。不计导体框的电阻、导体棒与框间的摩擦。ab以水平向右的初速度v0开始运动,最终停在导体框上。在此过程中 (  )

    A.导体棒做匀减速直线运动 B.导体棒中感应电流的方向为
    C.电阻R消耗的总电能为 D.导体棒克服安培力做的总功小于
    4.(2018·全国·高考真题)如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B。现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于(  )

    A. B. C. D.2

    二、多选题
    5.(2022·湖南·统考高考真题)如图,间距的U形金属导轨,一端接有的定值电阻,固定在高的绝缘水平桌面上。质量均为的匀质导体棒a和b静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒距离导轨最右端。整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为。用沿导轨水平向右的恒力拉导体棒a,当导体棒a运动到导轨最右端时,导体棒b刚要滑动,撤去,导体棒a离开导轨后落到水平地面上。重力加速度取,不计空气阻力,不计其他电阻,下列说法正确的是(  )

    A.导体棒a离开导轨至落地过程中,水平位移为
    B.导体棒a离开导轨至落地前,其感应电动势不变
    C.导体棒a在导轨上运动的过程中,导体棒b有向右运动的趋势
    D.导体棒a在导轨上运动的过程中,通过电阻的电荷量为
    6.(2022·河北·统考高考真题)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于轴上,另一根由、、三段直导轨组成,其中段与轴平行,导轨左端接入一电阻。导轨上一金属棒沿轴正向以速度保持匀速运动,时刻通过坐标原点,金属棒始终与轴垂直。设运动过程中通过电阻的电流强度为,金属棒受到安培力的大小为,金属棒克服安培力做功的功率为,电阻两端的电压为,导轨与金属棒接触良好,忽略导轨与金属棒的电阻。下列图像可能正确的是(  )

    A. B.
    C. D.
    7.(2021·广东·高考真题)如图所示,水平放置足够长光滑金属导轨和,与平行,是以O为圆心的圆弧导轨,圆弧左侧和扇形内有方向如图的匀强磁场,金属杆的O端与e点用导线相接,P端与圆弧接触良好,初始时,可滑动的金属杆静止在平行导轨上,若杆绕O点在匀强磁场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有(  )

    A.杆产生的感应电动势恒定
    B.杆受到的安培力不变
    C.杆做匀加速直线运动
    D.杆中的电流逐渐减小
    8.(2021·山东·高考真题)如图所示,电阻不计的光滑U形金属导轨固定在绝缘斜面上。区域Ⅰ、Ⅱ中磁场方向均垂直斜面向上,Ⅰ区中磁感应强度随时间均匀增加,Ⅱ区中为匀强磁场。阻值恒定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行至c处反向上行。运动过程中金属棒始终垂直导轨且接触良好。在第一次下行和上行的过程中,以下叙述正确的是(  )

    A.金属棒下行过b时的速度大于上行过b时的速度
    B.金属棒下行过b时的加速度大于上行过b时的加速度
    C.金属棒不能回到无磁场区
    D.金属棒能回到无磁场区,但不能回到a处
    9.(2021·辽宁·统考高考真题)如图(a)所示,两根间距为L、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t=0时磁场方向垂直纸面向里。在t=0到t=2t0的时间内,金属棒水平固定在距导轨顶端L处;t=2t0时,释放金属棒。整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则(  )

    A.在时,金属棒受到安培力的大小为
    B.在t=t0时,金属棒中电流的大小为
    C.在时,金属棒受到安培力的方向竖直向上
    D.在t=3t0时,金属棒中电流的方向向右
    10.(2021·福建·统考高考真题)如图,P、Q是两根固定在水平面内的光滑平行金属导轨,间距为L,导轨足够长且电阻可忽略不计。图中矩形区域有一方向垂直导轨平面向上、感应强度大小为B的匀强磁场。在时刻,两均匀金属棒a、b分别从磁场边界、进入磁场,速度大小均为;一段时间后,流经a棒的电流为0,此时,b棒仍位于磁场区域内。已知金属棒a、b相同材料制成,长度均为L,电阻分别为R和,a棒的质量为m。在运动过程中两金属棒始终与导轨垂直且接触良好,a、b棒没有相碰,则(  )

    A.时刻a棒加速度大小为
    B.时刻b棒的速度为0
    C.时间内,通过a棒横截面的电荷量是b棒的2倍
    D.时间内,a棒产生的焦耳热为
    11.(2020·全国·高考真题)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后(  )

    A.金属框的速度大小趋于恒定值
    B.金属框的加速度大小趋于恒定值
    C.导体棒所受安培力的大小趋于恒定值
    D.导体棒到金属框bc边的距离趋于恒定值
    12.(2020·海南·高考真题)如图,足够长的间距的平行光滑金属导轨MN、PQ固定在水平面内,导轨间存在一个宽度的匀强磁场区域,磁感应强度大小为,方向如图所示.一根质量,阻值的金属棒a以初速度从左端开始沿导轨滑动,穿过磁场区域后,与另一根质量,阻值的原来静置在导轨上的金属棒b发生弹性碰撞,两金属棒始终与导轨垂直且接触良好,导轨电阻不计,则(    )

    A.金属棒a第一次穿过磁场时做匀减速直线运动
    B.金属棒a第一次穿过磁场时回路中有逆时针方向的感应电流
    C.金属棒a第一次穿过磁场区域的过程中,金属棒b上产生的焦耳热为
    D.金属棒a最终停在距磁场左边界处
    13.(2019·全国·高考真题)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场。将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。已知PQ棒进入磁场时加速度恰好为零,PQ进入磁场开始计时,到MN离开磁场区域为止,流过PQ的电流随时间变化的图像可能正确的是(  )

    A. B.
    C. D.
    14.(2018·江苏·高考真题)如图所示,竖直放置的形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B.质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆(    )

    A.刚进入磁场Ⅰ时加速度方向竖直向下
    B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间
    C.穿过两磁场产生的总热量为4mgd
    D.释放时距磁场Ⅰ上边界的高度h可能小于
    15.(2019·全国·高考真题)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上。t=0时,棒ab以初速度v0向右滑动。运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示。下列图像中可能正确的是(  )

    A. B.
    C. D.

    三、解答题
    16.(2022·浙江·统考高考真题)如图所示,水平固定一半径r=0.2m的金属圆环,长均为r,电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度=600rad/s匀速转动,圆环内左半圆均存在磁感应强度大小为B1的匀强磁场。圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连。电容器左侧宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde。棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01kg,de与cf长度均为l3=0.08m,已知l1=0.25m,l2=0.068m,B1=B2=1T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直。开始时开关S和接线柱1接通,待电容器充电完毕后,将S从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2m后返回进入磁场。
    (1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?
    (2)求电容器释放的电荷量;
    (3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x。

    17.(2022·辽宁·高考真题)如图所示,两平行光滑长直金属导轨水平放置,间距为L。区域有匀强磁场,磁感应强度大小为B,方向竖直向上。初始时刻,磁场外的细金属杆M以初速度向右运动,磁场内的细金属杆N处于静止状态。两金属杆与导轨接触良好且运动过程中始终与导轨垂直。两杆的质量均为m,在导轨间的电阻均为R,感应电流产生的磁场及导轨的电阻忽略不计。
    (1)求M刚进入磁场时受到的安培力F的大小和方向;
    (2)若两杆在磁场内未相撞且N出磁场时的速度为,求:①N在磁场内运动过程中通过回路的电荷量q;②初始时刻N到的最小距离x;
    (3)初始时刻,若N到的距离与第(2)问初始时刻的相同、到的距离为,求M出磁场后不与N相撞条件下k的取值范围。

    18.(2022·浙江·高考真题)舰载机电磁弹射是现在航母最先进的弹射技术,我国在这一领域已达到世界先进水平。某兴趣小组开展电磁弹射系统的设计研究,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B。开关S与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S掷向2接通定值电阻R0,同时施加回撤力F,在F和磁场力作用下,动子恰好返回初始位置停下。若动子从静止开始至返回过程的v-t图如图2所示,在t1至t3时间内F=(800-10v)N,t3时撤去F。已知起飞速度v1=80m/s,t1=1.5s,线圈匝数n=100匝,每匝周长l=1m,飞机的质量M=10kg,动子和线圈的总质量m=5kg,R0=9.5Ω,B=0.1T,不计空气阻力和飞机起飞对动子运动速度的影响,求
    (1)恒流源的电流I;
    (2)线圈电阻R;
    (3)时刻t3。

    19.(2021·全国·高考真题)如图,一倾角为的光滑固定斜面的顶端放有质量的U型导体框,导体框的电阻忽略不计;一电阻的金属棒的两端置于导体框上,与导体框构成矩形回路;与斜面底边平行,长度。初始时与相距,金属棒与导体框同时由静止开始下滑,金属棒下滑距离后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小,重力加速度大小取。求:
    (1)金属棒在磁场中运动时所受安培力的大小;
    (2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;
    (3)导体框匀速运动的距离。

    20.(2021·天津·高考真题)如图所示,两根足够长的平行光滑金属导轨、间距,其电阻不计,两导轨及其构成的平面均与水平面成角,N、Q两端接有的电阻。一金属棒垂直导轨放置,两端与导轨始终有良好接触,已知的质量,电阻,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小。在平行于导轨向上的拉力作用下,以初速度沿导轨向上开始运动,可达到最大速度。运动过程中拉力的功率恒定不变,重力加速度。
    (1)求拉力的功率P;
    (2)开始运动后,经速度达到,此过程中克服安培力做功,求该过程中沿导轨的位移大小x。

    21.(2021·海南·高考真题)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
    (1)求金属杆中的电流和水平外力的功率;
    (2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为,求:
    (i)这段时间内电阻R上产生的焦耳热;
    (ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。

    22.(2021·湖北·统考高考真题)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的图像如图(b)所示,当流过元件Z的电流大于或等于时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取,。以下计算结果只能选用m、g、B、L、R表示。
    (1)闭合开关S。,由静止释放金属棒,求金属棒下落的最大速度v1;
    (2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
    (3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。

    23.(2020·全国·高考真题)如图,一边长为l0的正方形金属框abcd固定在水平面内,空间存在方向垂直于水平面、磁感应强度大小为B的匀强磁场。一长度大于的均匀导体棒以速率v自左向右在金属框上匀速滑过,滑动过程中导体棒始终与ac垂直且中点位于ac上,导体棒与金属框接触良好。已知导体棒单位长度的电阻为r,金属框电阻可忽略。将导体棒与a点之间的距离记为x,求导体棒所受安培力的大小随x()变化的关系式。

    24.(2020·北京·高考真题)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小随速度的变化曲线。
    (1)求列车速度从降至经过的时间t及行进的距离x。(保留1位小数)
    (2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为,不计金属棒及导轨的电阻。沿导轨向右运动的过程,对应列车的电气制动过程,可假设棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
    (3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从减到的过程中,在哪个速度附近所需机械制动最强?
    (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)

    25.(2020·浙江·高考真题)如图甲所示,在水平面内,固定放置着间距为l的两平行金属直导轨,其间连接有阻值为R的电阻,电阻两端连接示波器(内阻可视为无穷大),可动态显示电阻R两端的电压。两导轨间存在大小为B、方向垂直导轨平面的匀强磁场。时一质量为m、长为l的导体棒在外力F作用下从。位置开始做简谐运动,观察到示波器显示的电压随时间变化的波形是如图乙所示的正弦曲线。取,则简谐运动的平衡位置在坐标原点O。不计摩擦阻力和其它电阻,导体棒始终垂直导轨运动。(提示:可以用图象下的“面积”代表力F所做的功)
    (1)求导体棒所受到的安培力随时间t的变化规律;
    (2)求在0至0.25T时间内外力F的冲量;
    (3)若时外力,求外力与安培力大小相等时棒的位置坐标和速度。

    26.(2019·天津·高考真题)如图所示,固定在水平面上间距为的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒和长度也为、电阻均为,两棒与导轨始终接触良好.两端通过开关与电阻为的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为.的质量为,金属导轨足够长,电阻忽略不计.

    (1)闭合,若使保持静止,需在其上加多大的水平恒力,并指出其方向;
    (2)断开,在上述恒力作用下,由静止开始到速度大小为的加速过程中流过的电荷量为,求该过程安培力做的功.
    27.(2018·天津·高考真题)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置.图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m.列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关闭.

    (1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由;
    (2)求刚接通电源时列车加速度a的大小;
    (3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l.若某时刻列车的速度为,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?
    28.(2019·海南·高考真题)如图,一水平面内固定有两根平行的长直金属导轨,导轨间距为l;两根相同的导体棒AB、CD置于导轨上并与导轨垂直,长度均为l;棒与导轨间的动摩擦因数为(最大静摩擦力等于滑动摩擦力):整个装置处于匀强磁场中,磁感应强度大小为B,方向竖直向下。从时开始,对AB棒施加一外力,使AB棒从静止开始向右做匀加速运动,直到时刻撤去外力,此时棒中的感应电流为;已知CD棒在时刻开始运动,运动过程中两棒均与导轨接触良好。两棒的质量均为m,电阻均为R,导轨的电阻不计。重力加速度大小为g。

    (1)求AB棒做匀加速运动的加速度大小;
    (2)求撤去外力时CD棒的速度大小;
    (3)撤去外力后,CD棒在时刻静止,求此时AB棒的速度大小。
    29.(2019·浙江·高考真题)【加试题】如图所示,倾角θ=370、间距l=0.1m的足够长金属导轨底端接有阻值R=0.1Ω的电阻,质量m=0.1kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2m≤x≤0.8m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下从x=0处由静止开始沿斜面向上运动,其速度与位移x满足v=kx(可导出a=kv)k=5s-1.当棒ab运动至x1=0.2m处时,电阻R消耗的电功率P=0.12W,运动至x2=0.8m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处.棒ab始终保持与导轨垂直,不计其它电阻,求:(提示:可以用F-x图象下的“面积”代表力F做的功

    (1)磁感应强度B的大小
    (2)外力F随位移x变化的关系式;
    (3)在棒ab整个运动过程中,电阻R产生的焦耳热Q.
    30.(2019·江苏·高考真题)如图所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直.已知线圈的面积S=0.3m2、电阻R=0.6Ω,磁场的磁感应强度B=0.2T.现同时向两侧拉动线圈,线圈的两边在Δt=0.5s时间内合到一起.求线圈在上述过程中
    (1)感应电动势的平均值E;
    (2)感应电流的平均值I,并在图中标出电流方向;
    (3)通过导线横截面的电荷量q.

    31.(2018·浙江·高考真题)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s.线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻.一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上.在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2.接通开关S后,棒对挡条的压力恰好为零.假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻.

    (1)求磁感应强度B2的大小,并指出磁场方向;
    (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量.

    参考答案:
    1.C
    【详解】由题知杆在水平向右的拉力作用下先后两次都由静止开始做匀加速直线运动,则在v = 0时分别有

    则第一次和第二次运动中,杆从静止开始运动相同位移的时间分别为



    第一次和第二次运动中根据牛顿第二定律有,整理有

    则可知两次运动中F—v图像的斜率为,则有

    故选C。
    2.A
    【详解】C.根据楞次定律可知电容器的上极板应带正电,C错误;
    A.由题知导体棒匀速切割磁感线,根据几何关系切割长度为
    L = 2xtanθ,x = vt
    则产生的感应电动势为
    E = 2Bv2ttanθ
    由题图可知电容器直接与电源相连,则电容器的电荷量为
    Q = CE = 2BCv2ttanθ
    则流过导体棒的电流
    I = = 2BCv2tanθ
    A正确;
    B.当金属棒到达x0处时,导体棒产生的感应电动势为
    E′ = 2Bvx0tanθ
    则电容器的电荷量为
    Q = CE′ = 2BCvx0tanθ
    B错误;
    D.由于导体棒做匀速运动则
    F = F安 = BIL
    由选项A可知流过导体棒的电流I恒定,但L与t成正比,则F为变力,再根据力做功的功率公式
    P = Fv
    可看出F为变力,v不变则功率P随力F变化而变化;
    D错误;
    故选A。
    【点睛】


    3.C
    【详解】AB.导体棒向右运动,根据右手定则,可知电流方向为b到a,再根据左手定则可知,导体棒向到向左的安培力,根据法拉第电磁感应定律,可得产生的感应电动势为

    感应电流为

    故安培力为

    根据牛顿第二定律有

    可得

    随着速度减小,加速度不断减小,故导体棒不是做匀减速直线运动,故AB错误;
    C.根据能量守恒定律,可知回路中产生的总热量为

    因R与r串联,则产生的热量与电阻成正比,则R产生的热量为

    故C正确;
    D.整个过程只有安培力做负功,根据动能定理可知,导体棒克服安培力做的总功等于,故D错误。
    故选C。
    4.B
    【详解】在过程Ⅰ中,根据法拉第电磁感应定律,有
    E1=
    根据闭合电路欧姆定律,有
    I1= 且q1=I1Δt1
    在过程Ⅱ中,有
    E2=
    根据闭合电路欧姆定律,有
    I2=,q2=I2Δt2
    又q1=q2,即

    所以

    故选B。
    5.BD
    【详解】C.导体棒a在导轨上向右运动,产生的感应电流向里,流过导体棒b向里,由左手定则可知安培力向左,则导体棒b有向左运动的趋势,故C错误;
    A.导体棒b与电阻R并联,有

    当导体棒a运动到导轨最右端时,导体棒b刚要滑动,有

    联立解得a棒的速度为

    a棒做平抛运动,有


    联立解得导体棒a离开导轨至落地过程中水平位移为

    故A错误;
    B.导体棒a离开导轨至落地前做平抛运动,水平速度切割磁感线,则产生的感应电动势不变,故B正确;
    D.导体棒a在导轨上运动的过程中,通过电路的电量为

    导体棒b与电阻R并联,流过的电流与电阻成反比,则通过电阻的电荷量为

    故D正确。
    故选BD。
    6.AC
    【详解】当导体棒从O点向右运动L时,即在时间内,在某时刻导体棒切割磁感线的长度

    (θ为ab与ad的夹角)则根据
    E=BLv0

    可知回路电流均匀增加;安培力

    则F-t关系为抛物线,但是不过原点;安培力做功的功率

    则P-t关系为抛物线,但是不过原点;电阻两端的电压等于导体棒产生的感应电动势,即

    即图像是不过原点的直线;根据以上分析,可大致排除BD选项;
    当在时间内,导体棒切割磁感线的长度不变,感应电动势E不变,感应电流I不变,安培力F大小不变,安培力的功率P不变,电阻两端电压U保持不变;
    同理可判断,在时间内,导体棒切割磁感线长度逐渐减小,导体棒切割磁感线的感应电动势E均匀减小,感应电流I均匀减小,安培力F大小按照二次函数关系减小,但是不能减小到零,与内是对称的关系,安培力的功率P按照二次函数关系减小,但是不能减小到零,与内是对称的关系,电阻两端电压U按线性均匀减小;综上所述选项AC正确,BD错误。
    故选AC。
    7.AD
    【详解】A.OP转动切割磁感线产生的感应电动势为

    因为OP匀速转动,所以杆OP产生的感应电动势恒定,故A正确;
    BCD.杆OP匀速转动产生的感应电动势产生的感应电流由M到N通过MN棒,由左手定则可知,MN棒会向左运动,MN棒运动会切割磁感线,产生电动势与原来电流方向相反,让回路电流减小,MN棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D正确,BC错误。
    故选AD。
    8.ABD
    【详解】AB.在I区域中,磁感应强度为,感应电动势

    感应电动势恒定,所以导体棒上的感应电流恒为

    导体棒进入Ⅱ区域后,导体切割磁感线,产生一个感应电动势,因为导体棒到达点后又能上行,说明加速度始终沿斜面向上,下行和上行经过点的受力分析如图

    设下行、上行过b时导体棒的速度分别为,,则下行过b时导体棒切割磁感线产生的感应电流为

    下行过b时导体棒上的电流为

    下行过b时,根据牛顿第二定律可知

    上行过b时,切割磁感线的产出的感应电动势为

    上行过b时导体棒上的电流为

    根据牛顿第二定律可知

    比较加速度大小可知

    由于段距离不变,下行过程中加速度大,上行过程中加速度小,所以金属板下行过经过点时的速度大于上行经过点时的速度,AB正确;
    CD.导体棒上行时,加速度与速度同向,则导体棒做加速度减小的加速度运动,则一定能回到无磁场区。由AB分析可得,导体棒进磁场Ⅱ区(下行进磁场)的速度大于出磁场Ⅱ区(下行进磁场)的速度,导体棒在无磁场区做加速度相同的减速运动

    则金属棒不能回到处,C错误,D正确。
    故选ABD。
    9.BC
    【详解】AB.由图可知在0~t0时间段内产生的感应电动势为

    根据闭合电路欧姆定律有此时间段的电流为

    在时磁感应强度为,此时安培力为

    故A错误,B正确;
    C.由图可知在时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C正确;
    D.由图可知在时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D错误。
    故选BC。
    10.AD
    【详解】A.由题知,a进入磁场的速度方向向右,b的速度方向向左,根据右手定则可知,a产生的感应电流方向是E到F,b产生的感应电流方向是H到G,即两个感应电流方向相同,所以流过a、b的感应电流是两个感应电流之和,则有

    对a,根据牛顿第二定律有

    解得

    故A正确;
    B.根据左手定则,可知a受到的安培力向左,b受到的安培力向右,由于流过a、b的电流一直相等,故两个力大小相等,则a与b组成的系统动量守恒。由题知,时刻流过a的电流为零时,说明a、b之间的磁通量不变,即a、b在时刻达到了共同速度,设为v。由题知,金属棒a、b相同材料制成,长度均为L,电阻分别为R和,根据电阻定律有

    解得

    已知a的质量为m,设b的质量为,则有

    联立解得

    取向右为正方向,根据系统动量守恒有

    解得

    故B错误;
    C.在时间内,根据

    因通过两棒的电流时刻相等,所用时间相同,故通过两棒横截面的电荷量相等,故C错误;
    D.在时间内,对a、b组成的系统,根据能量守恒有

    解得回路中产生的总热量为

    对a、b,根据焦耳定律有

    因a、b流过的电流一直相等,所用时间相同,故a、b产生的热量与电阻成正比,即



    解得a棒产生的焦耳热为

    故D正确。
    故选AD。
    11.BC
    【详解】ABC.当金属框在恒力F作用下向右加速时,bc边产生从c向b的感应电流I,线框的加速度为a1,对线框,由牛顿第二定律得

    导体棒MN中感应电流从M向N,在感应电流安培力作用下向右加速,加速度为a2,对导体棒MN,由牛顿第二定律得

    当线框和导体棒MN都运动后,线框速度为v1,MN速度为v2,感应电流为

    感应电流从0开始增大,则a2从零开始增加,a1从开始减小,加速度差值为

    感应电流从零增加,则加速度差值减小,当差值为零时

    故有

    解得

    此后金属框与MN的速度差维持不变,感应电流不变,MN受到的安培力不变,加速度不变,v-t图象如图所示

    故A错误,BC正确;
    D.MN与金属框的速度差不变,但MN的速度小于金属框速,MN到金属框bc边的距离越来越大,故D错误。
    故选BC。
    12.BD
    【详解】A.金属棒a第一次穿过磁场时受到安培力的作用,做减速运动,由于速度减小,感应电流减小,安培力减小,加速度减小,故金属棒a做加速度减小的减速直线运动,故A错误;
    B.根据右手定则可知,金属棒a第一次穿过磁场时回路中有逆时针方向的感应电流,故B正确;
    C.电路中产生的平均电动势为

    平均电流为

    金属棒a受到的安培力为

    规定向右为正方向,对金属棒a,根据动量定理得

    解得对金属棒第一次离开磁场时速度

    金属棒a第一次穿过磁场区域的过程中,电路中产生的总热量等于金属棒a机械能的减少量,即

    联立并带入数据得

    由于两棒电阻相同,两棒产生的焦耳热相同,则金属棒b上产生的焦耳热

    故C错误;
    D.规定向右为正方向,两金属棒碰撞过程根据动量守恒和机械能守恒得


    联立并带入数据解得金属棒a反弹的速度为

    设金属棒a最终停在距磁场左边界处,则从反弹进入磁场到停下来的过程,电路中产生的平均电动势为

    平均电流为

    金属棒a受到的安培力为

    规定向右为正方向,对金属棒a,根据动量定理得

    联立并带入数据解得

    故D正确。
    故选BD。
    13.AD
    【详解】根据图像可知,设PQ进入磁场匀速运动的速度为v,匀强磁场的磁感应强度为B,导轨宽度为L,两根导体棒的总电阻为R;根据法拉第电磁感应定律和闭合电路的欧姆定律可得PQ进入磁场时电流

    保持不变,根据右手定则可知电流方向Q→P;如果PQ离开磁场时MN还没有进入磁场,此时电流为零;当MN进入磁场时也是匀速运动,通过PQ的感应电流大小不变,方向相反;如果PQ没有离开磁场时MN已经进入磁场,此时电流为零,当PQ离开磁场时MN的速度大于v,安培力大于重力沿斜面向下的分力,电流逐渐减小,通过PQ的感应电流方向相反;
    故选AD。
    14.BC
    【详解】本题考查电磁感应的应用,意在考查考生综合分析问题的能力.由于金属棒进入两个磁场的速度相等,而穿出磁场后金属杆做加速度为g的加速运动,所以金属感进入磁场时应做减速运动,选项A错误;对金属杆受力分析,根据可知,金属杆做加速度减小的减速运动,其进出磁场的v-t图象如图所示,由于0~t1和t1~t2图线与t轴包围的面积相等(都为d),所以t1>(t2-t1),选项B正确;从进入Ⅰ磁场到进入Ⅱ磁场之前过程中,根据能量守恒,金属棒减小的机械能全部转化为焦耳热,所以Q1=mg.2d,所以穿过两个磁场过程中产生的热量为4mgd,选项C正确;若金属杆进入磁场做匀速运动,则,得,有前面分析可知金属杆进入磁场的速度大于,根据得金属杆进入磁场的高度应大于,选项D错误.

    点睛:本题以金属杆在两个间隔磁场中运动时间相等为背景,考查电磁感应的应用,解题的突破点是金属棒进入磁场Ⅰ和Ⅱ时的速度相等,而金属棒在两磁场间运动时只受重力是匀加速运动,所以金属棒进入磁场时必做减速运动.
    15.AC
    【详解】ab棒向右运动,切割磁感线产生感应电流,则受到向左的安培力,从而向右做减速运动,;金属棒cd受向右的安培力作用而做加速运动,随着两棒的速度差的减小安培力减小,加速度减小,当两棒速度相等时,感应电流为零,最终两棒共速,一起做匀速运动,故最终电路中电流为0,故AC正确,BD错误.
    16.(1)0.54C;M板;(2)0.16C;(3)0.14m
    【详解】(1)开关S和接线柱1接通,电容器充电充电过程,对绕转轴OO′转动的棒由右手定则可知其动生电源的电流沿径向向外,即边缘为电源正极,圆心为负极,则M板充正电;
    根据法拉第电磁感应定律可知

    则电容器的电量为

    (2)电容器放电过程有

    棒ab被弹出磁场后与“[”形框粘在一起的过程有

    棒的上滑过程有

    联立解得

    (3)设导体框在磁场中减速滑行的总路程为,由动量定理

    可得

    匀速运动距离为



    17.(1),方向水平向左;(2)①,②;(3)
    【详解】(1)细金属杆M以初速度向右刚进入磁场时,产生的动生电动势为

    电流方向为,电流的大小为

    则所受的安培力大小为

    安培力的方向由左手定则可知水平向左;
    (2)①金属杆N在磁场内运动过程中,由动量定理有



    联立解得通过回路的电荷量为

    ②设两杆在磁场中相对靠近的位移为,有


    整理可得

    联立可得

    若两杆在磁场内刚好相撞,N到的最小距离为

    (3)两杆出磁场后在平行光滑长直金属导轨上运动,若N到的距离与第(2)问初始时刻的相同、到的距离为,则N到cd边的速度大小恒为,根据动量守恒定律可知

    解得N出磁场时,M的速度大小为

    由题意可知,此时M到cd边的距离为

    若要保证M出磁场后不与N相撞,则有两种临界情况:
    ①M减速出磁场,出磁场的速度刚好等于N的速度,一定不与N相撞,对M根据动量定理有


    联立解得

    ②M运动到cd边时,恰好减速到零,则对M由动量定理有


    同理解得

    综上所述,M出磁场后不与N相撞条件下k的取值范围为

    18.(1)80A;(2);(3)
    【详解】(1)由题意可知接通恒流源时安培力

    动子和线圈在0~t1时间段内做匀加速直线运动,运动的加速度为

    根据牛顿第二定律有

    代入数据联立解得

    (2)当S掷向2接通定值电阻R0时,感应电流为

    此时安培力为

    所以此时根据牛顿第二定律有

    由图可知在至期间加速度恒定,则有

    解得

    (3)根据图像可知

    故;在0~t2时间段内的位移

    而根据法拉第电磁感应定律有

    电荷量的定义式


    可得

    从t3时刻到最后返回初始位置停下的时间段内通过回路的电荷量,根据动量定理有

    联立可得

    解得

    19.(1);(2),;(3)
    【详解】(1)根据题意可得金属棒和导体框在没有进入磁场时一起做匀加速直线运动,由动能定理可得

    代入数据解得

    金属棒在磁场中切割磁场产生感应电动势,由法拉第电磁感应定律可得

    由闭合回路的欧姆定律可得

    则导体棒刚进入磁场时受到的安培力为

    (2)金属棒进入磁场以后因为瞬间受到安培力的作用,根据楞次定律可知金属棒的安培力沿斜面向上,之后金属棒相对导体框向上运动,因此金属棒受到导体框给的沿斜面向下的滑动摩擦力,因匀速运动,可有

    此时导体框向下做匀加速运动,根据牛顿第二定律可得

    设磁场区域的宽度为x,则金属棒在磁场中运动的时间为

    则此时导体框的速度为

    则导体框的位移

    因此导体框和金属棒的相对位移为

    由题意当金属棒离开磁场时金属框的上端EF刚好进入磁场,则有位移关系

    金属框进入磁场时匀速运动,此时的电动势为

    导体框受到向上的安培力和滑动摩擦力,因此可得

    联立以上可得
    ,,,
    (3)金属棒出磁场以后,速度小于导体框的速度,因此受到向下的摩擦力,做加速运动,则有

    金属棒向下加速,导体框匀速,当共速时导体框不再匀速,则有

    导体框匀速运动的距离为

    代入数据解得

    20.(1);(2)
    【详解】(1)在运动过程中,由于拉力功率恒定,做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F,安培力大小为,有

    设此时回路中的感应电动势为E,由法拉第电磁感应定律,有

    设回路中的感应电流为I,由闭合电路欧姆定律,有

    受到的安培力

    由功率表达式,有

    联立上述各式,代入数据解得

    (2)从速度到的过程中,由动能定理,有

    代入数据解得

    21.(1),;(2)(i),(ii)
    【详解】(1)金属棒切割磁感线产生的感应电动势
    E = Blv0
    则金属杆中的电流

    由题知,金属杆在水平外力作用下以速度v0向右做匀速直线运动则有

    根据功率的计算公式有

    (2)(i)设金属杆内单位体积的自由电子数为n,金属杆的横截面积为S,则金属杆在水平外力作用下以速度v0向右做匀速直线运动时的电流由微观表示为

    解得

    当电子沿金属杆定向移动的速率变为时,有

    解得
    v′ =
    根据能量守恒定律有

    解得

    (ii)由(i)可知在这段时间内金属杆的速度由v0变到,设这段时间内一直在金属杆内的自由电子沿杆定向移动的距离为d,规定水平向右为正方向,则根据动量定理有

    由于

    解得

    22.(1);(2);(3)
    【分析】[关键能力]本题考 查法拉第电磁感应定律、闭合电路欧姆定律等知识,意在考查考生综合电磁学知识以及力学规律处理问题的能力。
    [压轴题透析] 3第(1)问通过对金属棒的受力分析以及运动分析,求出当金属棒的加速度为零时的最大速度;第(2)问首先应分析比较第(1)问中的电流与图(b)中Z元件的电压达到最大时的电流大小关系,然后通过定值电阻表示出回路中的最大电流,进而求出金属棒的最大速度;第(3)问的关键在于求出开关断开瞬间回路中的电流,得出导体棒所受的安培力大小,再根据牛顿第二定律求出金属棒的加速度。
    【详解】(1)闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则

    由法拉第电磁感应定律得

    由欧姆定律得

    解得

    (2)由第(1)问得

    由于

    断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为

    此时定值电阻两端的电压为

    回路中的电流为

    又由欧姆定律得

    解得

    (3)开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为

    断开开关S的瞬间,元件Z两端的电压为

    则定值电阻两端的电压为

    电路中的电流为

    金属棒受到的安培力为

    对金属棒由牛顿第二定律得

    解得

    23.
    【详解】当导体棒与金属框接触的两点间棒的长度为l时,由法第电磁感应定律可知导体棒上感应电动势的大小为

    由欧姆定律可知流过导体棒的感应电流为

    式中R为这一段导体棒的电阻。按题意有

    此时导体棒所受安培力大小为

    由题设和几何关系有

    联立各式得

    24.. (1) ,;(2) 列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数,论证过程见解析。画出的图线如下图所示:


    (3)
    【详解】(1)列车速度从降至的过程中做匀减速直线运动,根据运动学公式可得


    (2)设金属棒MN的质量为m,磁感应强度为B,导轨宽度为l,MN棒在任意时刻的速度大小为vMN。MN棒切割磁感线产生的感应电动势为

    回路中的电流为

    MN棒所受安培力大小为

    MN棒的加速度大小为

    由上式可知与成正比。又因为MN棒运动的速度与列车的速度、棒的加速度与列车电气化制动产生的加速度成正比,所以电气制动产生的加速度a电气与列车的速度v成正比,则电气制动产生的加速度大小随列车速度变化图线如图1所示。

    (3)制动过程中,列车受到的阻力是由电气制动、机械制动和空气阻力共同引起的。由(2)可知,电气制动的阻力与列车速度成正比;空气阻力随速度的减小而减小;由题图1并根据牛顿第二定律可知,列车速度在20m/s至3m/s区间所需合力最大且不变。综合以上分析可知,列车速度在3m/s左右所需机械制动最强。
    25.(1)
    (2)
    (3) 和;和
    【详解】(1)由显示的波形可得


    安培力随时间变化规律:

    (2)安培力的冲量:

    由动量定理,有:

    解得:
    (3)棒做简谐运动,有:

    当时:


    当时,设,



    根据动能定理:

    解得:和;和
    26.(1),方向水平向右;(2)
    【详解】(1)设线圈中的感应电动势为,由法拉第电磁感应定律,则
            ①
    设与并联的电阻为,有
            ②
    闭合时,设线圈中的电流为,根据闭合电路欧姆定律得
            ③
    设中的电流为,有
            ④
    设受到的安培力为,有
            ⑤
    保持静止,由受力平衡,有ⅠⅡⅢⅣ
            ⑥
    联立①②③④⑤⑥式得
            ⑦
    方向水平向右.
    (2)设由静止开始到速度大小为的加速过程中,运动的位移为,所用时间为,回路中的磁通量变化为,平均感应电动势为,有
            ⑧
    其中
            ⑨
    设中的平均电流为,有
            ⑩
    根据电流的定义得
            ⑪
    由动能定理,有
            ⑫
    联立⑦⑧⑨⑩⑪⑫⑬式得
            ⑬
    27.(1)M接电源正极,理由见解析(2)(3)若恰好为整数,设其为n,则需设置n块有界磁场,若不是整数,设的整数部分为N,则需设置N+1块有界磁场
    【详解】试题分析:结合列车的运动方向,应用左手定则判断电流方向,从而判断哪一个接电源正极;对导体棒受力分析,根据闭合回路欧姆定律以及牛顿第二定律求解加速度;根据动量定理分析列车进入和穿出磁场时动量变化,据此分析;
    (1)M接电源正极,列车要向右运动,安培力方向应向右,根据左手定则,接通电源后,金属棒中电流方向由a到b,由c到d,故M接电源正极.
    (2)由题意,启动时ab、cd并联,设回路总电阻为,由电阻的串并联知识得①;
    设回路总电流为I,根据闭合电路欧姆定律有②
    设两根金属棒所受安培力之和为F,有F=BIl③
    根据牛顿第二定律有F=ma④,联立①②③④式得⑤
    (3)设列车减速时,cd进入磁场后经时间ab恰好进入磁场,此过程中穿过两金属棒与导轨所围回路的磁通量的变化为,平均感应电动势为,由法拉第电磁感应定律有⑥,其中⑦;
    设回路中平均电流为,由闭合电路欧姆定律有⑧
    设cd受到的平均安培力为,有⑨
    以向右为正方向,设时间内cd受安培力冲量为,有⑩
    同理可知,回路出磁场时ab受安培力冲量仍为上述值,设回路进出一块有界磁场区域安培力冲量为,有⑪
    设列车停下来受到的总冲量为,由动量定理有⑫
    联立⑥⑦⑧⑨⑩⑪⑫式得⑬
    讨论:若恰好为整数,设其为n,则需设置n块有界磁场,若不是整数,设的整数部分为N,则需设置N+1块有界磁场.⑭.
    【点睛】如图所示,在电磁感应中,电量q与安培力的冲量之间的关系,如图所示,以电量为桥梁,直接把图中左右两边的物理量联系起来,如把导体棒的位移 和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法直接使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙,这种题型难度最大.

    28.(1);(2);(3)
    【详解】(1)设AB棒做匀加速运动的加速度大小为a,在t=t0时刻AB棒的速度为v0=at0,
    此时对CD棒:


    联立解得:
    (2)在t1时刻,AB棒的速度;
    此时  

    解得
    (3)撤去外力后到CD棒静止,对CD棒由动量定理: ,
    对AB棒:
    联立解得:
    29.(1);(2)无磁场区间:;有磁场区间:;(3)
    【详解】(1)由
    E=Blv,
    解得
    (2)无磁场区间: ,a=5v=25x

    有磁场区间:


    (3)上升过程中克服安培力做功(梯形面积)
    撤去外力后,棒ab上升的最大距离为s,再次进入磁场时的速度为v',则:


    解得v'=2m/s
    由于
    故棒再次进入磁场后做匀速运动;
    下降过程中克服安培力做功:

    30.(1)E=0.12V;(2)I=0.2A(电流方向见图) ;(3)q=0.1C
    【详解】(1)由法拉第电磁感应定律有:
    感应电动势的平均值
    磁通量的变化
    解得:
    代入数据得:E=0.12V;
    (2)由闭合电路欧姆定律可得:
    平均电流
    代入数据得I=0.2A
    由楞次定律可得,感应电流方向如图:

    (3)由电流的定义式可得:电荷量q=I∆t代入数据得q=0.1C.
    31.(1)0.50T,垂直纸面向外(2)
    【详解】(1)线圈的感应电动势为
    流过导体棒的电流
    导体棒对挡条的压力为零,有或,解得,
    因为安培力向上,棒中电流向左,根据左手定则可知磁场方向垂直纸面向外
    (2)根据动量定律,,解得
    ab棒产生的热量,解得


    相关试卷

    十年(14-23)高考物理真题分项汇编专题49 导体棒在导轨上运动问题(一)(含解析):

    这是一份十年(14-23)高考物理真题分项汇编专题49 导体棒在导轨上运动问题(一)(含解析),共43页。试卷主要包含了多选题,单选题,解答题等内容,欢迎下载使用。

    十年(14-23)高考物理真题分项汇编专题50 导体棒在导轨上运动问题(二)(含解析):

    这是一份十年(14-23)高考物理真题分项汇编专题50 导体棒在导轨上运动问题(二)(含解析),共43页。试卷主要包含了变化的关系式等内容,欢迎下载使用。

    专题16 电感感应之导体棒在导轨上运动问题-冲刺高考物理大题突破+限时集训(全国通用):

    这是一份专题16 电感感应之导体棒在导轨上运动问题-冲刺高考物理大题突破+限时集训(全国通用),文件包含专题16电感感应之导体棒在导轨上运动问题-冲刺高考物理大题突破+限时集训全国通用解析版docx、专题16电感感应之导体棒在导轨上运动问题-冲刺高考物理大题突破+限时集训全国通用原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map