![高中数学高考专题28 离散性随机变量与期望(原卷版)第1页](http://img-preview.51jiaoxi.com/3/3/14051288/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考专题28 离散性随机变量与期望(原卷版)第2页](http://img-preview.51jiaoxi.com/3/3/14051288/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学高考专题28 离散性随机变量与期望(原卷版)
展开
这是一份高中数学高考专题28 离散性随机变量与期望(原卷版),共5页。试卷主要包含了二项分布的应用,超几何分布的应用,随机变量分布列与数列的结合问题等内容,欢迎下载使用。
【解决之道】解决此类问题的关键在于,准确把题中随机变量的取值情况,准确对所涉及的事件进行分解,明确所求问题所属的事件类型是关键.特别是要注意挖掘题目中的隐含条件.
【三年高考】
1.【2020年高考山东卷12】信息熵是信息论中的一个重要概念,设随机变量所有可能的值为,且,,定义的信息熵,则( )
A.若,则
B.若,则随着的增大而增大
C.若,则随着的增大而增大
D.若,随机变量所有可能的取值为,且,则
2.【2019年高考浙江卷】设0<a<1,则随机变量X的分布列是
则当a在(0,1)内增大时,( )
A.增大B.减小
C.先增大后减小D.先减小后增大
3.【2018年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )
A.0.7B.0.6
C.0.4D.0.3
4.【2018年高考浙江卷】设,随机变量ξ的分布列是
则当p在(0,1)内增大时,( )
A.D(ξ)减小B.D(ξ)增大
C.D(ξ)先减小后增大D.D(ξ)先增大后减小
5.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
6.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.
命题规律二 二项分布的应用
【解决之道】解决此类问题的关键要熟记二项分布的概念、分布列公式及期望、方差公式,再利用这些知识解决实际问题.
【三年高考】
1.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(1)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(2)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
2.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
命题规律三 超几何分布的应用
【解决之道】解决此类问题关键是熟记超几何分布的意义及超几何分布的概率公式,会利用超几何分布计算相关事件的概率.
【三年高考】
1.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
命题规律四 随机变量分布列与数列的结合问题
【解决之道】解决此类问题的关键在于,认真阅读题目,分析清楚随机变量分布列的取值情况及取各值时的概率及其相互关系,找到数列的递推公式,利用已有的数列知识求解.
【三年高考】
1.【2020年高考江苏卷25】甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn.
(1)求p1·q1和p2·q2;
(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用n表示) .
2.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
命题规律五 随机变量分布列的期望与方差最值问题
【解决之道】解决此类问题的关键在于根据随机变量分布列的期望与方差公式,求出期望与方差,若期望与方差是常数,进行比较,即可判断大小,若期望是关于某个变量的式子,则利用求函数最值的方法求最值,注意定义域.
【三年高考】
1..【2020年高考全国Ⅲ卷理数3】在一组样本数据中,出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
2.【2020年高考浙江卷16】一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为,则 ; .
命题规律
内 容
典 型
1
离散型随机变量分布列及其期望与方差
2020年高考山东卷12
2
二项分布的应用
2019年高考天津卷理数
3
超几何分布的应用
2018年高考天津卷理数
4
随机变量分布列与数列的结合问题
2019年高考全国Ⅰ卷理数
5
随机变量分布列的期望与方差的最值
2020年高考全国Ⅲ卷理数3
ξ
0
1
2
P
支付金额(元)
支付方式
(0,1000]
(1000,2000]
大于2000
仅使用A
18人
9人
3人
仅使用B
10人
14人
1人
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
电影部数
140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
相关试卷
这是一份新高考数学一轮复习小题考点特训40 随机变量及其分布列、期望与方差(2份打包,原卷版+含解析),文件包含微点特训40随机变量及其分布列期望与方差参考答案pdf、微点特训40随机变量及其分布列期望与方差pdf等2份试卷配套教学资源,其中试卷共5页, 欢迎下载使用。
这是一份高中数学高考专题35 利用二项分布期望方差公式求解期望方差(原卷版),共12页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
这是一份高中数学高考专题28 体积法求点面距离(原卷版),共11页。试卷主要包含了多选题,单选题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)