高中数学高考专题27 概率与统计(原卷版)
展开【解决之道】解决此类问题的关键在于,理解频率与概率的关系及古典概型的概念与计算.
【三年高考】
1.【2020年高考全国Ⅱ卷文理数4】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压份订单未配货,预计第二天的新订单超过份的概率为,志愿者每人每天能完成份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于,则至少需要志愿者 ( )
A.名B.名C.名D.名
2.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A.B.
C.D.
3.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.
4.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________.
5.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A.B.C.D.
6.【2018年高考江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.
命题规律二 利用样本的均值与方差估计总体的均值与方差
【解决之道】解决此类问题的关键是掌握样本均值与方差的计算、以及以茎叶图或频率分布直方图给出样本数据的中位数、均值、方差的计算,会利用这些统计量进行决策.
【三年高考】
1.【2020年高考天津卷4】从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为( )
A.10B.18C.20D.36
2.【2020年高考上海卷8】已知有四个数,这四个数的中位数为3,平均数为4,则 .
3.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5B.0.6
C.0.7 D.0.8
4.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数B.平均数
C.方差 D.极差
5.【2018年高考全国Ⅰ卷理数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
建设前经济收入构成比例 建设后经济收入构成比例
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
6.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.
7.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.
8.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
命题规律三 应用互斥事件的和概率计算与相互独立事件的积概率计算复杂事件的概率.
【解决之道】对复杂事件的概率计算问题,通常先将复杂事件分解成若干个互斥事件简单事件的和的问题,再将基本事件分成若干个相互独立事件的积概率问题,再用相互独立事件的积概率公式,计算出每个简单事件的概率,再用互斥事件的和概率公式计算其概率.
【三年高考】
1.【2020年高考山东卷5】某中学的学生积极参加体育锻炼,其中有的学生喜欢足球或游泳,的学生喜欢足球,的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A. B. C.D.
2.【2020年高考天津卷13】已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.
3.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________.
4.【2020年高考全国Ⅰ卷理数19】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.
经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
5.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
命题规律四 几何概型的计算问题
【解决之道】解决此问题的关键,要正确区分古典概型与几何概型的区别与联系,连续变量的概率问题是几何概型,在计算几个概型前要理清是长度概型或是面积概型或是体积概型,再用几何概型公式计算.
【三年高考】
1.【2018年高考全国Ⅰ卷理数】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )
A.p1=p2B.p1=p3
C.p2=p3D.p1=p2+p3
命题规律五 独立性检验应用
【解决之道】独立性检验是研究两个分类变量相关关系的重要手段,独立性检验的一般步骤:(1)根据样本数据列出2×2列联表;(2)计算随机变量K2的观测值k,查下表确定临界值k0:(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过P(K2≥k0);否则,就认为在犯错误的概率不超过P(K2≥k0)的前提下不能推断“X与Y有关”.
【三年高考】
1.【2020年高考全国Ⅲ卷文理数18】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理
数据得到下表(单位:天):
(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
附:
2.【2020年高考山东卷19】
为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
3.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?[来源:学。科。网]
附:,
命题规律六 回归方程与回归分析在实际中的应用
【解决之道】1.线性回归分析问题的类型及解题方法
(1)求线性回归方程
①利用公式,求出回归系数eq \(b,\s\up6(^)),eq \(a,\s\up6(^)).
②待定系数法:利用回归直线过样本点的中心求系数.
(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.
(3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数eq \(b,\s\up6(^)).
(4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.
2.模型拟合效果的判断
(1)残差平方和越小,模型的拟合效果越好.
(2)相关指数R2越大,模型的拟合效果越好.
(3)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.
【三年高考】
1.【2020年高考全国Ⅰ卷文理数5】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是( )
A. B. C. D.
2.【2020年高考全国Ⅱ卷文理数18】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
求样本的相关系数(精确到);
根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数,.
3.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
命题规律
内 容
典 型
1
考查以频率估计概率及古典概型
2020年高考全国Ⅱ卷文理数
2
利用样本的均值与方差估计总体的均值与方差
2019年高考全国Ⅱ卷理数
3
应用互斥事件的和概率计算与相互独立事件的积概率计算复杂事件的概率
2020年高考全国Ⅰ卷理数19
4
几何概型的计算问题
2018年高考全国Ⅰ卷理数
5
独立性检验应用
2020年高考全国Ⅲ卷文理数18
6
回归方程与回归分析在实际中的应用
2020年高考全国Ⅱ卷文理数18
锻炼人次
空气质量等级
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
人次
人次
空气质量好
空气质量不好
32
18
4
6
8
12
3
7
10
超过
不超过
第一种生产方式
第二种生产方式
专题25概率与统计-原卷版: 这是一份专题25概率与统计-原卷版,共14页。试卷主要包含了找准古典概率的样本空间,分辨随机现象中的概率模型,规范掌握双联表的分析方法,较大者随机函数的取值转化, 阅读统计年鉴提升分析能力, 识信息交叉结构分解综台问题等内容,欢迎下载使用。
高中数学高考专题27 向量法求空间角(原卷版): 这是一份高中数学高考专题27 向量法求空间角(原卷版),共12页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
高中数学高考专题27 算法(原卷版): 这是一份高中数学高考专题27 算法(原卷版),共6页。试卷主要包含了以程序框图考查输出结果,以程序框图形式已知输出考查输入,以程序框图形式考查补全程序框,以算法语言形式考查输出等内容,欢迎下载使用。