所属成套资源:【全套】中考数学13个专题 以几何图形中的动点最值问题为背景的选择填空题(解析版)
【全套】中考数学专题第10关 以二次函数与相似三角形问题为背景的解答题(原卷版)
展开
这是一份【全套】中考数学专题第10关 以二次函数与相似三角形问题为背景的解答题(原卷版),共12页。
【解题思路】理解存在性问题的解题思路,根据已知角相等找出对应边成比例,存在性问题的知识覆盖面较广,综合性较强,解题方法灵活,对学生分析问题和解决问题的要求较高。一般思路是从存在的角度出发→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出不存在的判断.函数中因动点产生的相似三角形问题一般有三个解题途径:①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形,根据未知三角形中已知边与已知三角形的可能对应边分类讨论;②利用已知三角形中对应角,在未知三角形中利用勾股定理/三角函数/对称/旋转等知识来推导边的大小;③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数关系式表示各边的长度,之后利用相似列方程求解.
【典型例题】
【例1】(2019·湖南中考真题)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
【例2】(2019·江苏中考真题)如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点.
(1)点的坐标是 ______;
(2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为.过点作直线与线段、分别交于点,,使得与相似.
①当时,求的长;
②若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 ______.
【方法归纳】
两个定三角形是否相似:
(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例?若成比例,则相似;否则不相似。
(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例?若成比例,则相似;否则不相似。
一个定三角形和动三角形相似:
(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来(用字母表示),然后把两个目标三角形(题中要相似的那两个三角形)中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例(要注意是否有两种情况),列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点。
(2)不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标(用字母表示)后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例?若成比例,则所求动点坐标符合题意,否则这样的点不存在。简称“找特角,求(动)点标,再验证”。或称为“一找角,二求标,三验证”。
【针对练习】
1.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L:经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为.
(1)求抛物线L的表达式;
(2)点P在抛物线上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
2.(2019·辽宁中考模拟)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
3.(2019·湖南中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
4.(2019·山东初三期末)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
5.(2019·湖南麓山国际实验学校慈利校区初三开学考试)如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.
(1)求的值及该抛物线的解析式;
(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△和等腰直角△,连接,试确定△面积最大时点的坐标.
(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由.
6.(2019·贵州初三)如图,已知直线y=-2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)若抛物线的解析式为y=-2x2+2x+4,设其顶点为M,其对称轴交AB于点N.
①求点M、N的坐标;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
7.(2019·辽宁中考真题)如图,抛物线与轴交于,两点,与轴交于点,点是抛物线的顶点.
(1)求抛物线的解析式.
(2)点是轴负半轴上的一点,且,点在对称轴右侧的抛物线上运动,连接,与抛物线的对称轴交于点,连接,当平分时,求点的坐标.
(3)直线交对称轴于点,是坐标平面内一点,请直接写出与全等时点的坐标.
8.(2019·杭州市行知中学初三开学考试)如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
9.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).
(1)求抛物线的解析式.
(2)若△AOC与△FEB相似,求a的值.
(3)当PH=2时,求点P的坐标.
10.(2019·辽宁初三期末)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
11.(2019·湖北中考真题)如图,在直角坐标系中,直线与轴,轴分别交于点,点,对称轴为的抛物线过两点,且交轴于另一点,连接.
(1)直接写出点,点,点的坐标和抛物线的解析式;
(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;
(3)抛物线上是否存在一点(点除外),使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
12.(2019·广东中考真题)如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.
(1)求点、、的坐标;
(2)求证:四边形是平行四边形;
(3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).
①求出一个满足以上条件的点的横坐标;
②直接回答这样的点共有几个?
13.(2019·山东中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点,连接,又已知位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线,线段以及轴于点.
(1)求抛物线的表达式;
(2)连接,,当直线运动时,求使得和相似的点的坐标;
(3)作,垂足为,当直线运动时,求面积的最大值.
14.(2019·广西中考模拟)如图,抛物线与坐标轴交点分别为,,,作直线BC.
求抛物线的解析式;
点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;
条件同,若与相似,求点P的坐标.
15.(2019·湖北中考模拟)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.
16.(2019·四川中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.
17.(2019·武邑宏达学校初三月考)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.
(1)求抛物线的解析式;
(2)当0<t≤8时,求△APC面积的最大值;
(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
18.(2019·湖北初三月考)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
相关试卷
这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版),共12页。
这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(解析版),共55页。
这是一份【全套】中考数学专题第12关 以二次函数与特殊四边形问题为背景的解答题(原卷版),共12页。