终身会员
搜索
    上传资料 赚现金

    高中数学高考第3章 §3 6 利用导数证明不等式 试卷

    立即下载
    加入资料篮
    高中数学高考第3章 §3 6 利用导数证明不等式第1页
    高中数学高考第3章 §3 6 利用导数证明不等式第2页
    高中数学高考第3章 §3 6 利用导数证明不等式第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第3章 §3 6 利用导数证明不等式

    展开

    这是一份高中数学高考第3章 §3 6 利用导数证明不等式,共12页。


    例1 已知函数g(x)=x3+ax2.
    (1)若函数g(x)在[1,3]上为单调函数,求a的取值范围;
    (2)已知a>-1,x>0,求证:g(x)>x2ln x.
    (1)解 由题意知,函数g(x)=x3+ax2,
    则g′(x)=3x2+2ax,
    若g(x)在[1,3]上单调递增,
    则g′(x)=3x2+2ax≥0在[1,3]上恒成立,
    则a≥-eq \f(3,2);
    若g(x)在[1,3]上单调递减,
    则g′(x)=3x2+2ax≤0在[1,3]上恒成立,
    则a≤-eq \f(9,2).所以a的取值范围是eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(9,2)))∪eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(3,2),+∞)).
    (2)证明 由题意得,要证g(x)>x2ln x,x>0,
    即证x3+ax2>x2ln x,即证x+a>ln x,
    令u(x)=x+a-ln x,x>0,
    可得u′(x)=1-eq \f(1,x)=eq \f(x-1,x),x>0,
    当0当x>1时,u′(x)>0,函数u(x)单调递增.
    所以u(x)≥u(1)=1+a,
    因为a>-1,所以u(x)>0,
    故当a>-1时,对于任意x>0,g(x)>x2ln x.
    教师备选
    已知函数f(x)=1-eq \f(ln x,x),g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
    (1)求a,b的值;
    (2)证明:当x≥1时,f(x)+g(x)≥eq \f(2,x).
    (1)解 因为f(x)=1-eq \f(ln x,x),x>0,
    所以f′(x)=eq \f(ln x-1,x2),f′(1)=-1.
    因为g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,
    所以g′(x)=-eq \f(ae,ex)-eq \f(1,x2)-b.
    因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
    所以g(1)=1,且f′(1)·g′(1)=-1,
    所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
    解得a=-1,b=-1.
    (2)证明 由(1)知,g(x)=-eq \f(e,ex)+eq \f(1,x)+x,
    则f(x)+g(x)≥eq \f(2,x)⇔1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0.
    令h(x)=1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x(x≥1),
    则h(1)=0,
    h′(x)=eq \f(-1+ln x,x2)+eq \f(e,ex)+eq \f(1,x2)+1=eq \f(ln x,x2)+eq \f(e,ex)+1.
    因为x≥1,所以h′(x)=eq \f(ln x,x2)+eq \f(e,ex)+1>0,
    所以h(x)在[1,+∞)上单调递增,
    所以当x≥1时,h(x)≥h(1)=0,
    即1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0,
    所以当x≥1时,f(x)+g(x)≥eq \f(2,x).
    思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
    跟踪训练1 已知函数f(x)=ln x+eq \f(a,x),a∈R.
    (1)讨论函数f(x)的单调性;
    (2)当a>0时,证明:f(x)≥eq \f(2a-1,a).
    (1)解 f′(x)=eq \f(1,x)-eq \f(a,x2)=eq \f(x-a,x2)(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
    若0(2)证明 由(1)知,当a>0时,
    f(x)min=f(a)=ln a+1.
    要证f(x)≥eq \f(2a-1,a),只需证ln a+1≥eq \f(2a-1,a),
    即证ln a+eq \f(1,a)-1≥0.
    令函数g(a)=ln a+eq \f(1,a)-1,
    则g′(a)=eq \f(1,a)-eq \f(1,a2)=eq \f(a-1,a2)(a>0),
    当0当a>1时,g′(a)>0,
    所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,
    所以g(a)min=g(1)=0.
    所以ln a+eq \f(1,a)-1≥0恒成立,
    所以f(x)≥eq \f(2a-1,a).
    题型二 将不等式转化为两个函数的最值进行比较
    例2 (2022·武汉模拟)已知函数f(x)=aln x+x.
    (1)讨论f(x)的单调性;
    (2)当a=1时,证明:xf(x)(1)解 f(x)的定义域为(0,+∞),
    f′(x)=eq \f(a,x)+1=eq \f(x+a,x).
    当a≥0时,f′(x)>0,
    所以f(x)在(0,+∞)上单调递增.
    当a<0时,若x∈(-a,+∞),则f′(x)>0;
    若x∈(0,-a),则f′(x)<0.
    所以f(x)在(-a,+∞)上单调递增,
    在(0,-a)上单调递减.
    综上所述,当a≥0时,f(x)在(0,+∞)上单调递增;
    当a<0时,f(x)在(-a,+∞)上单调递增,
    在(0,-a)上单调递减.
    (2)证明 当a=1时,要证xf(x)即证x2+xln x即证1+eq \f(ln x,x)令函数g(x)=1+eq \f(ln x,x),
    则g′(x)=eq \f(1-ln x,x2).
    令g′(x)>0,得x∈(0,e);
    令g′(x)<0,得x∈(e,+∞).
    所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
    所以g(x)max=g(e)=1+eq \f(1,e),
    令函数h(x)=eq \f(ex,x2),
    则h′(x)=eq \f(exx-2,x3).
    当x∈(0,2)时,h′(x)<0;
    当x∈(2,+∞)时,h′(x)>0.
    所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
    所以h(x)min=h(2)=eq \f(e2,4).
    因为eq \f(e2,4)-eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,e)))>0,
    所以h(x)min>g(x)max,
    即1+eq \f(ln x,x)教师备选
    (2022·长沙模拟)已知函数f(x)=ex2-xln x.求证:当x>0时,f(x)证明 要证f(x)只需证ex-ln x即ex-ex令h(x)=ln x+eq \f(1,ex)(x>0),
    则h′(x)=eq \f(ex-1,ex2),
    易知h(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e)))上单调递减,
    在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e),+∞))上单调递增,
    则h(x)min=heq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e)))=0,
    所以ln x+eq \f(1,ex)≥0.
    再令φ(x)=ex-ex,
    则φ′(x)=e-ex,
    易知φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
    则φ(x)max=φ(1)=0,
    所以ex-ex≤0.因为h(x)与φ(x)不同时为0,
    所以ex-ex思维升华 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x与ex,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.
    跟踪训练2 (2022·百校大联考)已知函数f(x)=eln x-ax(a∈R).
    (1)讨论函数f(x)的单调性;
    (2)当a=e时,证明:xf(x)-ex+2ex≤0.
    (1)解 f′(x)=eq \f(e,x)-a(x>0),
    ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当00;
    当x>eq \f(e,a)时,f′(x)<0.
    故f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(e,a)))上单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(e,a),+∞))上单调递减.
    (2)证明 因为x>0,所以只需证f(x)≤eq \f(ex,x)-2e,
    当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
    所以f(x)max=f(1)=-e.
    设g(x)=eq \f(ex,x)-2e(x>0),则g′(x)=eq \f(x-1ex,x2),
    所以当0当x>1时,g′(x)>0,g(x)单调递增,
    所以g(x)min=g(1)=-e.
    综上,当x>0时,f(x)≤g(x),
    即f(x)≤eq \f(ex,x)-2e.
    故不等式xf(x)-ex+2ex≤0得证.
    题型三 适当放缩证明不等式
    例3 已知函数f(x)=ex.
    (1)求曲线y=f(x)在点(0,f(0))处的切线方程;
    (2)当x>-2时,求证:f(x)>ln(x+2).
    (1)解 由f(x)=ex,得f(0)=1,f′(x)=ex,
    则f′(0)=1,即曲线y=f(x)在点(0,f(0))处的切线方程为y-1=x-0,
    所以所求切线方程为x-y+1=0.
    (2)证明 设g(x)=f(x)-(x+1)=ex-x-1(x>-2),
    则g′(x)=ex-1,
    当-2当x>0时,g′(x)>0,
    即g(x)在(-2,0)上单调递减,在(0,+∞)上单调递增,
    于是当x=0时,g(x)min=g(0)=0,
    因此f(x)≥x+1(当且仅当x=0时取等号),
    令h(x)=x+1-ln(x+2)(x>-2),
    则h′(x)=1-eq \f(1,x+2)=eq \f(x+1,x+2),
    则当-2当x>-1时,h′(x)>0,
    即有h(x)在(-2,-1)上单调递减,
    在(-1,+∞)上单调递增,
    于是当x=-1时,h(x)min=h(-1)=0,
    因此x+1≥ln(x+2)(当且仅当x=-1时取等号),所以当x>-2时,f(x)>ln(x+2).
    教师备选
    已知函数f(x)=eq \f(xln x,x+m),g(x)=eq \f(x,ex),且曲线y=f(x)在x=1处的切线方程为x-2y+n=0.
    (1)求m,n的值;
    (2)证明:f(x)>2g(x)-1.
    (1)解 由已知得,f(1)=0,∴1-0+n=0,
    解得n=-1.
    ∵f′(x)=eq \f(ln x+1x+m-xln x,x+m2),
    ∴f′(1)=eq \f(m+1,1+m2)=eq \f(1,2),
    解得m=1.
    (2)证明 设h(x)=ex-x-1(x>0),
    则h′(x)=ex-1>0,
    ∴h(x)在(0,+∞)上单调递增,
    ∴h(x)>h(0)=0,即ex>x+1>1,
    ∴eq \f(1,ex)要证f(x)>2g(x)-1,即证eq \f(xln x,x+1)>eq \f(2x,ex)-1,
    只需证eq \f(xln x,x+1)≥eq \f(2x,x+1)-1,
    即证xln x≥x-1,
    令m(x)=xln x-x+1,则m′(x)=ln x,
    ∴当x∈(0,1)时,m′(x)<0;
    当x∈(1,+∞)时,m′(x)>0,
    ∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
    ∴m(x)min=m(1)=0,
    即m(x)≥0,
    ∴xln x≥x-1,则f(x)>2g(x)-1得证.
    思维升华 导数方法证明不等式中,最常见的是ex和ln x与其他代数式结合的问题,对于这类问题,可以考虑先对ex和ln x进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)ex≥1+x,当且仅当x=0时取等号.(2)ln x≤x-1,当且仅当x=1时取等号.
    跟踪训练3 已知函数f(x)=aex-1-ln x-1.
    (1)若a=1,求f(x)在(1,f(1))处的切线方程;
    (2)证明:当a≥1时,f(x)≥0.
    (1)解 当a=1时,
    f(x)=ex-1-ln x-1(x>0),
    f′(x)=ex-1-eq \f(1,x),
    k=f′(1)=0,
    又f(1)=0,
    ∴切点为(1,0).
    ∴切线方程为y-0=0(x-1),即y=0.
    (2)证明 ∵a≥1,
    ∴aex-1≥ex-1,
    ∴f(x)≥ex-1-ln x-1.
    方法一 令φ(x)=ex-1-ln x-1(x>0),
    ∴φ′(x)=ex-1-eq \f(1,x),
    令h(x)=ex-1-eq \f(1,x),
    ∴h′(x)=ex-1+eq \f(1,x2)>0,
    ∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,
    ∴当x∈(0,1)时,φ′(x)<0;当x∈(1,+∞)时,φ′(x)>0,
    ∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
    ∴φ(x)min=φ(1)=0,
    ∴φ(x)≥0,
    ∴f(x)≥φ(x)≥0,
    即f(x)≥0.
    方法二 令g(x)=ex-x-1,
    ∴g′(x)=ex-1.
    当x∈(-∞,0)时,g′(x)<0;
    当x∈(0,+∞)时,g′(x)>0,
    ∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴g(x)min=g(0)=0,
    故ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,
    当且仅当x=1时取“=”.
    由ex≥x+1⇒ex-1≥x(当且仅当x=1时取“=”),
    由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),
    ∴ex-1≥x≥ln x+1,
    即ex-1≥ln x+1,
    即ex-1-ln x-1≥0(当且仅当x=1时取“=”),即f(x)≥0.
    课时精练
    1.已知函数f(x)=eq \f(ln x,x+a)(a∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=eq \f(1,e).
    (1)求实数a的值,并求f(x)的单调区间;
    (2)求证:当x>0时,f(x)≤x-1.
    (1)解 ∵f(x)=eq \f(ln x,x+a),
    ∴f′(x)=eq \f(\f(x+a,x)-ln x,x+a2),∴f′(e)=eq \f(\f(a,e),e+a2),
    又曲线y=f(x)在点(e,f(e))处的切线方程为y=eq \f(1,e),
    则f′(e)=0,即a=0,
    ∴f′(x)=eq \f(1-ln x,x2),
    令f′(x)>0,得1-ln x>0,即0令f′(x)<0,得1-ln x<0,即x>e,
    ∴f(x)的单调递增区间是(0,e),单调递减区间是(e,+∞).
    (2)证明 当x>0时,要证f(x)≤x-1,
    即证ln x-x2+x≤0,
    令g(x)=ln x-x2+x(x>0),
    则g′(x)=eq \f(1,x)-2x+1=eq \f(1+x-2x2,x)
    =-eq \f(x-12x+1,x),
    当00,g(x)单调递增;
    当x>1时,g′(x)<0,g(x)单调递减,
    ∴g(x)≤g(1)=0,即当x>0时,f(x)≤x-1.
    2.已知f(x)=xln x.
    (1)求函数f(x)的极值;
    (2)证明:对一切x∈(0,+∞),都有ln x>eq \f(1,ex)-eq \f(2,ex)成立.
    (1)解 由f(x)=xln x,x>0,
    得f′(x)=ln x+1,令f′(x)=0,得x=eq \f(1,e).
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e)))时,f′(x)<0,f(x)单调递减;
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e),+∞))时,f′(x)>0,f(x)单调递增.
    所以当x=eq \f(1,e)时,f(x)取得极小值,
    f(x)极小值=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e)))=-eq \f(1,e),无极大值.
    (2)证明 问题等价于证明
    xln x>eq \f(x,ex)-eq \f(2,e)(x∈(0,+∞)).
    由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-eq \f(1,e),当且仅当x=eq \f(1,e)时取到.
    设m(x)=eq \f(x,ex)-eq \f(2,e)(x∈(0,+∞)),
    则m′(x)=eq \f(1-x,ex),由m′(x)<0,得x>1时,m(x)单调递减;由m′(x)>0得0eq \f(1,ex)-eq \f(2,ex)成立.
    3.已知函数f(x)=ln x-ax(a∈R).
    (1)讨论函数f(x)在(0,+∞)上的单调性;
    (2)证明:ex-e2ln x>0恒成立.
    (1)解 f(x)的定义域为(0,+∞),
    f′(x)=eq \f(1,x)-a=eq \f(1-ax,x),
    当a≤0时,f′(x)>0,
    ∴f(x)在(0,+∞)上单调递增,
    当a>0时,令f′(x)=0,得x=eq \f(1,a),
    ∴x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))时,f′(x)>0;
    x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))时,f′(x)<0,
    ∴f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))上单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))上单调递减.
    (2)证明 要证ex-e2ln x>0,即证ex-2>ln x,
    令φ(x)=ex-x-1,∴φ′(x)=ex-1.
    令φ′(x)=0,得x=0,
    ∴当x∈(-∞,0)时,φ′(x)<0;
    当x∈(0,+∞)时,φ′(x)>0,
    ∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
    ∴φ(x)min=φ(0)=0,
    即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.
    同理可证ln x≤x-1,
    当且仅当x=1时取“=”.
    由ex≥x+1(当且仅当x=0时取“=”),
    可得ex-2≥x-1(当且仅当x=2时取“=”),
    又x-1≥ln x,当且仅当x=1时取“=”,
    ∴ex-2≥x-1≥ln x且两等号不能同时成立,
    故ex-2>ln x.即证原不等式成立.
    4.(2022·常德模拟)已知函数f(x)=xex-x.
    (1)讨论f(x)的单调性;
    (2)证明:当x>0时,f(x)-ln x≥1.
    (1)解 由题意得f′(x)=(x+1)ex-1,
    设g(x)=(x+1)ex,则g′(x)=(x+2)ex,
    当x≤-1时,g(x)≤0,f′(x)<0,
    f(x)在(-∞,-1]上单调递减;
    当x>-1时,g′(x)>0,g(x)单调递增,
    又因为g(0)=1,
    所以当x<0时,g(x)<1,即f′(x)<0,
    当x>0时,g(x)>1,即f′(x)>0,
    综上可知,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
    (2)证明 要证f(x)-ln x≥1,
    即证xex-x-ln x≥1,
    即证ex+ln x-(x+ln x)≥1,
    令t=x+ln x,易知t∈R,待证不等式转化为
    et-t≥1.
    设u(t)=et-t,则u′(t)=et-1,
    当t<0时,u′(t)<0,当t>0时,u′(t)>0,
    故u(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
    所以u(t)≥u(0)=1,原命题得证.

    相关试卷

    高中数学高考第4节 利用导数证明不等式 课件练习题:

    这是一份高中数学高考第4节 利用导数证明不等式 课件练习题,共39页。PPT课件主要包含了点击右图进入等内容,欢迎下载使用。

    高中数学高考专题23 利用导数证明不等式(解析版):

    这是一份高中数学高考专题23 利用导数证明不等式(解析版),共31页。试卷主要包含了多选题,解答题等内容,欢迎下载使用。

    高中数学高考第17讲 导数的应用——利用导数证明不等式(教师版):

    这是一份高中数学高考第17讲 导数的应用——利用导数证明不等式(教师版),共8页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map