![高中数学高考第2讲 函数的单调性与最值第1页](http://img-preview.51jiaoxi.com/3/3/14032929/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考第2讲 函数的单调性与最值第2页](http://img-preview.51jiaoxi.com/3/3/14032929/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学高考第2讲 函数的单调性与最值第3页](http://img-preview.51jiaoxi.com/3/3/14032929/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
高中数学高考第2讲 函数的单调性与最值 试卷
展开第2讲 函数的单调性与最值一、选择题1.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为( )A.-2 B.2 C.-6 D.6解析 由图象易知函数f(x)=|2x+a|的单调增区间是[-,+∞),令-=3,∴a=-6.答案 C2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( )A.y= B.y=cos xC.y=ln(x+1) D.y=2-x解析 ∵y=与y=ln(x+1)在(-1,1)上为增函数,且y=cos x在(-1,1)上不具备单调性.∴A,B,C不满足题意.只有y=2-x=在(-1,1)上是减函数.答案 D3.定义新运算“⊕”:当a≥b时,a⊕b=a2;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),在区间[-2,2]上的最大值等于( )A.-1 B.1 C.6 D.12解析 由已知得当-2≤x≤1时,f(x)=x-2,当1<x≤2时,f(x)=x3-2.∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.∴f(x)的最大值为f(2)=23-2=6.答案 C4.已知函数y=f(x)的图象关于x=1对称,且在(1,+∞)上单调递增,设a=f,b=f(2),c=f(3),则a,b,c的大小关系为( )A.c<b<a B.b<a<cC.b<c<a D.a<b<c解析 ∵函数图象关于x=1对称,∴a=f=f,又y=f(x)在(1,+∞)上单调递增,∴f(2)<f<f(3),即b<a<c.答案 B5.f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是( )A.(8,+∞) B.(8,9] C.[8,9] D.(0,8)解析 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)上的增函数,所以有解得8<x≤9.答案 B二、填空题6.(2017·郑州模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.解析 由题意知g(x)=函数的图象如图所示的实线部分,根据图象,g(x)的减区间是[0,1).答案 [0,1)7.(2017·石家庄调研)函数f(x)=-log2(x+2)在区间[-1,1]上的最大值为________.解析 由于y=在R上递减,y=log2(x+2)在[-1,1]上递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.答案 38.(2017·潍坊模拟)设函数f(x)=若函数y=f(x)在区间(a,a+1)上单调递增,则实数a的取值范围是________.解析 作出函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.答案 (-∞,1]∪[4,+∞)三、解答题9.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)在上的值域是,求a的值.(1)证明 设x2>x1>0,则x2-x1>0,x1x2>0,∵f(x2)-f(x1)=-=-=>0,∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.(2)解 ∵f(x)在上的值域是,又由(1)得f(x)在上是单调增函数,∴f=,f(2)=2,易知a=.10.已知函数f(x)=2x-的定义域为(0,1](a为实数).(1)当a=1时,求函数y=f(x)的值域;(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.解 (1)当a=1时,f(x)=2x-,任取1≥x1>x2>0,则f(x1)-f(x2)=2(x1-x2)-=(x1-x2).∵1≥x1>x2>0,∴x1-x2>0,x1x2>0.∴f(x1)>f(x2),∴f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值1,所以f(x)的值域为(-∞,1].(2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;当a<0时,f(x)=2x+,当≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a;当<1,即a∈(-2,0)时,y=f(x)在上单调递减,在上单调递增,无最大值,当x=时取得最小值2.11.(2017·郑州质检)若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=( )A.4 B.2 C. D.解析 当a>1,则y=ax为增函数,有a2=4,a-1=m,此时a=2,m=,此时g(x)=-在[0,+∞)上为减函数,不合题意.当0<a<1,则y=ax为减函数,有a-1=4,a2=m,此时a=,m=.此时g(x)=在[0,+∞)上是增函数.故a=.答案 D12.(2017·枣阳第一中学模拟)已知函数f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为( )A.[0,3] B.(1,3)C.[2-,2+] D.(2-,2+)解析 由题可知f(x)=ex-1>-1,g(x)=-x2+4x-3=-(x-2)2+1≤1,若f(a)=g(b),则g(b)∈(-1,1],所以-b2+4b-3>-1,即b2-4b+2<0,解得2-<b<2+.所以实数b的取值范围为(2-,2+).答案 D13.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.解析 依题意,h(x)=当0<x≤2时,h(x)=log2x是增函数,当x>2时,h(x)=3-x是减函数,∴h(x)在x=2时,取得最大值h(2)=1.答案 114.已知函数f(x)=lg(x+-2),其中a是大于0的常数.(1)求函数f(x)的定义域;(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.解 (1)由x+-2>0,得>0,当a>1时,x2-2x+a>0恒成立,定义域为(0,+∞),当a=1时,定义域为{x|x>0且x≠1},当0<a<1时,定义域为{x|0<x<1-或x>1+}.(2)设g(x)=x+-2,当a∈(1,4),x∈[2,+∞)时,∴g′(x)=1-=>0.因此g(x)在[2,+∞)上是增函数,∴f(x)在[2,+∞)上是增函数.则f(x)min=f(2)=ln.(3)对任意x∈[2,+∞),恒有f(x)>0.即x+-2>1对x∈[2,+∞)恒成立.∴a>3x-x2.令h(x)=3x-x2,x∈[2,+∞).由于h(x)=-+在[2,+∞)上是减函数,∴h(x)max=h(2)=2.故a>2时,恒有f(x)>0.因此实数a的取值范围为(2,+∞).
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)