搜索
    上传资料 赚现金
    英语朗读宝

    2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷

    2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷第1页
    2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷第2页
    2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷第3页
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷

    展开

    这是一份2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷,共15页。试卷主要包含了30,lg3≈0等内容,欢迎下载使用。
     2022年山东省五莲县、诸城市、安丘市、兰山区四县区高考数学过程性试卷 1.5分)已知集合,则A.  B.
    C.  D. 2.5分)已知,则在复平面内复数对应的点位于A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3.5分)某正四棱锥的侧棱与底面所成的角为,则该正四棱锥的侧面与底面的面积之比为A.  B.  C.  D. 4.5分)下列区间中,函数单调递减的区间是A.  B.
    C.  D. 5.5分)设是定义在上的奇函数,且当时,,则的解集为A.  B.
    C.  D. 6.5分)按照碳达峰碳中和的实现路径,年为碳达峰时期,年实现碳中和,到年,纯电动汽车在整体汽车中的渗透率有望超过,新型动力电池迎来了蓬勃发展的风口.年提出蓄电池的容量单位:,放电时间单位:与放电电流单位:之间关系的经验公式:,其中常数.为了测算某蓄电池的常数,在电池容量不变的条件下,当放电电流时,放电时间;当放电电流时,放电时间则该蓄电池的常数大约为
    参考数据:A.  B.  C.  D. 7.5分)已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是A.  B.  C.  D. 8.5分)已知定义在上的函数为自然对数的底数,,则A.  B.
    C.  D. 与实数的取值有关9.5分)我国居民收入与经济同步增长,人民生活水平显著提高.三农工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力,年某市城镇居民、农村居民年人均可支配收入比上年增长率如图所示,根据下面图表、下列说法一定正确的是A. 对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的小
    B. 该市农村居民年人均可支配收入高于城镇居民
    C. 对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大
    D. 年该市城镇居民、农村居民年人均可支配收入比年有所上升10.5分)已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点沿逆时针方向旋转角得到点已知平面内点,点,把点绕点沿顺时针方向旋转后得到点,逆时针旋转后分别得到点,则A.  B.
    C.  D. 的坐标为11.5分)已知函数,则下列结论正确的是A. 是周期函数
    B. 是奇函数
    C. 的图象关于直线对称
    D. 处取得最大值12.5分)在棱长为的正方体中,为正方形的中心,为棱上的动点,则下列说法正确的是
     A. 中点时,
    B. 与点重合时三棱锥外接球体积为
    C. 点运动时,三棱锥外接球的球心总在直线
    D. 中点时,正方体表面到点距离为的轨迹的总长度为13.5分)若函数,则______.14.5分)若双曲线的渐近线方程为,则的离心率为 ______.15.5分)一个箱子中装有形状完全相同的个白球和个黑球,现从中有放回的摸取次,每次都是随机摸取一球,设摸得白球个数为,若,则______.16.5分)已知数列中,,对任意成等差数列,公差为,则______17.12分)在中,内角所对的边分别为
    ,求
    在边上,且,证明:平分18.12分)已知数列中,成等差数列.
    的值和的通项公式;
    ,求数列的前项和19.12分)如图,四棱锥的底面为梯形,底面的中点.
    证明:平面平面
    若二面角的余弦值为,求三棱锥的体积.
     20.12分)第届冬季奥林匹克运动会,即年北京冬季奥运会,于日星期五开幕,日星期日闭幕.北京冬季奥运会设个大项,个分项,个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为;乙在第一轮和第二轮比赛中获胜的概率分别为;丙在第一轮和第二轮获胜的概率分别是,其中
    甲、乙、丙三人中,谁进入决赛的可能性最大;
    若甲、乙、丙三人中恰有两人进人决赛的概率,求的值;
    的条件下,设进入决赛的人数为,求的分布列.21.12分)已知圆的焦点为,长轴长与短轴长的比值为
    的方程;
    过点的直线交于两点,轴于点轴于点,直线交直线于点,求证:点三点共线.22.12分)已知函数,且上的最大值为
    求实数的值;
    讨论函数内的零点个数,并加以证明.
    答案和解析1.【答案】A【解析】解:集合

    故选:
    利用交集的运算直接求解.
    此题主要考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.
     2.【答案】A【解析】解:


    对应的点位于第一象限,
    故选:
    根据复数的运算,化简,求出,从而求出答案即可.
    此题主要考查了复数的运算,考查转化思想,是基础题.
     3.【答案】D【解析】解:如图,是正四棱锥的高,

    设底面边长为,则底面积为
    因为正四棱锥的侧棱与底面所成的角为
    所以,又,所以
    所以是正三角形,面积为
    所以,即正四棱锥的侧面与底面的面积之比为
    故选:
    设底面边长为,由线面角的定义可得侧棱长,然后分别求侧面的面积和底面的面积即可得解.
    此题主要考查棱锥的几何特征,考查学生的运算能力,属于中档题.
     4.【答案】B【解析】解:在区间上,,函数单调递增,故排除
    在区间上,,函数单调递减,故满足条件;
    在区间上,,函数不单调,故排除
    在区间上,,函数单调递增,故排除
    故选:
    由题意,利用诱导公式、正弦函数的单调性,得出结论.
    此题主要考查诱导公式、正弦函数的单调性,属于中档题.
     5.【答案】C【解析】解:是定义在上的奇函数,且当时,
    所以时,

    所以


    故选:
    由已知结合奇函数定义可求出时的函数解析式,进而可求.
    此题主要考查了函数奇偶性在求解不等式中的应用,属于基础题.
     6.【答案】B【解析】解:由题意可得,电池的容量为定值,
    ,即
    两边取对数可得,,即

    故选:
    由题意可得,电池的容量为定值,则,即,再结合对数函数的公式,即可求解.
    此题主要考查函数的实际应用,掌握对数函数的公式是解本题的关键,属于基础题.
     7.【答案】C【解析】解:连接,根据抛物线定义可知,点到抛物线准线的距离等于点到焦点的距离,
    连接圆心与焦点,交圆于点,交抛物线于点,如图所示,

    此时点到点的距离与点到抛物线的准线距离之和最小即为的长度,
    其中,故
    故选:
    根据抛物线定义将线段进行转化,数形结合进行求解.
    此题主要考查抛物线的几何性质,圆锥曲线中的范围与最值问题,属于中等题.
     8.【答案】B【解析】解:根据题意,函数

    则有

    故选:
    根据题意,由函数的解析式分析可得,由此分析可得答案.
    此题主要考查函数值的计算,注意分析的值,属于基础题.
     9.【答案】CD【解析】解:对于,由表中数据可知,城镇居民相关数据极差较大,故错误,
    对于:这个图表是年城镇居民与农村居民可支配收入的增长率,通过这个我们并不能得出该市农村居民可支配收入高于城镇居民,故错误,
    对于:由表中数据可知,对于该市居民年人均可支配收入比上年增长率的中位数,农村的比城镇的大,
    正确,
    对于:由表中数据可知,增长率为正,故正确,
    故选:
    根据图表中的信息,逐个判断各个选项即可.
    此题主要考查了统计图表的应用,属于基础题.
     10.【答案】ABD【解析】解:由已知可得,
    绕点沿顺时针方向旋转相当于点绕点沿逆时针方向旋转



    ,故,故选项正确;
    ,故选项正确;

    ,故选项正确;
    显然,故选项错误.
    故选:
    根据题意求得,进而求得,再逐项判断即可.
    本题以新定义在载体,旨在考查平面向量的综合运用,考查运算求解能力,属于中档题.
     11.【答案】BD【解析】解:因为的最小周期是的最小正周期是,但
    所以函数不是周期函数,故错误;
    B.
    时,同理可得,且,所以函数是奇函数,故正确;
    C.,所以函数的图象不关于直线对称,故错误;
    D.时,,所以函数取得最大值,故正确.
    故选:
    首先化简函数,再根据函数周期的定义,判断
    利用函数奇偶性的定义,判断
    利用对称性的特征,举反例,判断
    代入验证
    此题主要考查了三角函数性质及诱导公式,属于中档题.
     12.【答案】ACD【解析】解:对于的中位线,故
    平面,故平面,则,故正确;
    对于重合时,三棱锥的外接球即正方体外接球,故,故错误;
    对于的中心且垂直于平面,故以为底的三棱锥,球心在上,故正确;
    对于,在平面和平面上轨迹是以为圆心,为半径,圆心角为的两段孤,
    在平面和平面上,轨迹是以为半径,圆心角为的两段弧,故,故正确,
    故选:
    由题意,为棱上的动点,则对应点在不同的位置,对各项进行分析即可.
    此题主要考查点的轨迹方程,及球的体积和表面积,考查学生的推理运算能力,属于难题.
     13.【答案】 -2【解析】解:根据题意,函数


    故答案为:
    根据题意,由函数的解析式计算可得答案.
    此题主要考查分段函数的求值,涉及函数的解析式,属于基础题.
     14.【答案】 【解析】解:由双曲线方程可得其焦点在上,因为其一条渐近线为
    所以
    故答案为:
    根据渐近线方程,得到的比例关系,然后去求解离心率可得答案.
    此题主要考查双曲线的几何性质,双曲线离心率的求解等知识,属于基础题.
     15.【答案】 2【解析】解:有放回的摸取次,每次随机摸取一球是白球的概率相等,设为
    而摸取次即为一次试验,只有两个不同结果,
    因此,,则,解得
    所以
    故答案为:
    根据给定条件,利用二项分布的期望、方差公式计算作答.
    此题主要考查了二项分布的期望、方差公式,属于基础题.
     16.【答案】 299【解析】解:数列中,,对任意成等差数列,公差为


    故答案为:
    推导出,从而,由此能求出
    此题主要考查等差数列的第项的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.
     17.【答案】解:(1)由sinA-2sinB,可得a=2b=4
    所以cosC==-
    因为C∈0π),
    所以C=
    2)证明:设∠BCD=α∠ACD=β
    因为sinA=2sinB,由正弦定理得a=2b
    △BCD中,由正弦定理得:=① 
    △ACD中,由正弦定理得:=② 
    因为sin∠BDC=sin∠ADCa=2b
    所以可得sinα=sinβ
    因为0αβ
    所以α=β,即CD平分∠ACB
     【解析】
    根据正弦定理可知,根据余弦定理可求,由此即可求
    由正弦定理证明即可.
    此题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
     18.【答案】解:(1+++成等差数列,
    所以2+=+++
    -=-,得(k-1=k-1
    因为k≠1,所以==2
    所以,得=
    2
    n为偶数时,设n=2k
    可得Sn=S2k=++⋅⋅⋅++++⋯+==

    n为奇数时,设n=2k-1
    可得Sn=S2k-1=++⋅⋅⋅++++⋅⋅⋅+==

    综上所述,【解析】
    成等差数列,可求得,即可求出值和通项公式;
    可求出的通项公式,分类讨论即可求出数列的前项和
    此题主要考查了数列的递推式和求和,属于中档题.
     19.【答案】证明:(1)因为PD⊥底面ABCDBC⊂ABCD,则PD⊥BC
    ∠BAD=90°AD=AB=1
    ,又∠CDA=90°,则AB∥DC
    FCD中点,连接BF
    易知ABFD为正方形,则BF=1,又CD=2,即FC=1,所以
    综上BC2+BD2=CD2,即BD⊥BC
    BD∩PD=D,则BC⊥PBD,又BC⊂BCE
    所以平面PBD⊥平面BCE

    解:(2)由题设,以DADCDP分别为x,与yz轴建立空间直角坐标系,设PD=m
    D000),B110),C020),P00m),

    所以
    为面PBC的一个法向量,则
    x=1,则
    为面EBC的一个法向量,则
    a=1,则
    所以,整理得
    所以,即,易得PA=2
    PD⊥底面ABCDAB⊂ABCD,则PD⊥AB,又∠BAD=90°,即AD⊥AB
    PD∩AD=D,则AB⊥PADPA⊂PAD,即AB⊥PA
    所以在直角△PAB中,
    △PBC中,,即PB2+BC2=PC2,则PB⊥BC
    所以
    由上有且面PBC的一个法向量
    ,故E到面PBC的距离.
    所以【解析】
    线面垂直的性质可得,若中点,连接,由正方形的性质及勾股定理可得,再由线面垂直的性质有,最后根据面面垂直的判定证结论;
    构建空间直角坐标系,设求相关点坐标,再求面、面的法向量,应用空间向量夹角的坐标表示,结合二面角的余弦值求参数,最后求、向量法求到面的距离,再由体积公式求棱锥的体积.
    此题主要考查了面面垂直的证明和三棱锥的体积计算,属于中档题.
     20.【答案】解:(1)甲在初赛的两轮中均获胜的概率为:
    乙在初赛的两轮中均获胜的概率为:
    丙在初赛的两轮中均获胜的概率为:



    甲进入决赛可能性最大.
    2P=P1×P2×1-P3+P1P31-P2+P2P31-P1==
    解得
    ,解得p=p=

    ∴p=
    3)由题意可得,ξ所有可能取值为0123
    Pξ=0=


    ξ的分布列为:ξ0123P 【解析】
    分别求出甲,乙,丙三人初赛的两轮均获胜的概率,通过比较,即可求解.
    根据已知条件,结合相互独立事件的概率公式,即可求解.
    由题意可得,所有可能取值为,分别求出对应的概率,即可求解.
    此题主要考查离散型随机变量分布列的求解,需要学生很强的综合能力,属于难题.
     21.【答案】解:(1)由题设,所以=2
    又因为c=2=+,所以2=+4,解得=4=8
    所以椭圆M的方程为
    2)证明:由题意可知,直线l斜率存在,设直线l的方程为y=kx-2),
    ,得(1+2-8x+8-8=0
    A),B),则
    因为AD⊥x轴,所以D0),
    直线BD方程为,所以
    因为BC⊥x轴,所以C0
    因为
    所以======0
    所以CAE三点共线.【解析】
    由题设,又,解得,进而可得答案.
    由题意可知,直线斜率存在,设,直线的方程为,联立椭圆的方程,结合韦达定理可得,由于轴,则,写出直线的方程,进而可得点的坐标,写出直线的斜率,在计算,即可得出答案.
    此题主要考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.
     22.【答案】解:(1)因为,所以
    时,有
    a=0时,,不符合条件,
    a0时,f'x)<0,则fx)在上单调递减,
    ,不符合条件,
    a0时,f'x)>0.则fx)在上单调递增,
    ,解得a=1
    2)有(1)知fx)在单调递增,
    因为,所以fx)在内存在唯一的零点,

    因为f'π=-lnπ+1)<0
    所以f'x)在内存在零点,即f'=0
    因为
    所以当时,有f''x)<0,即f'x)在上单调递减,
    所以当时,f'x=f'=0,即fx)在上单调递增,
    所以有,即fx)在无零点,
    x∈[π]时,f'x)<f'=0,所以fx)在[π]上单调递减,
    因为f)>0fπ)<0,所以fx)在[π]内有且仅有一个零点,
    综上所述,fx)在[0π]内有两个零点.【解析】
    求出函数的导数,通过讨论的范围,求出函数的最大值,得到关于的方程,求出的值即可;
    求出函数上单调递增,得到个零点,再讨论上的单调性从而求出另个零点即可.
    此题主要考查了函数的单调性,最值问题,考查导数的应用以及转化思想,分类讨论思想,是难题.
     

    相关试卷

    高中数学高考山东省安丘市、诸城市、五莲县、兰山区2019届高三数学4月模拟训练试卷文(含解析):

    这是一份高中数学高考山东省安丘市、诸城市、五莲县、兰山区2019届高三数学4月模拟训练试卷文(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学高考山东省安丘市、诸城市、五莲县、兰山区2019届高三数学4月模拟训练试卷理(含解析):

    这是一份高中数学高考山东省安丘市、诸城市、五莲县、兰山区2019届高三数学4月模拟训练试卷理(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省潍坊安丘市等三县2022届高三上学期10月过程性测试 数学 含答案:

    这是一份山东省潍坊安丘市等三县2022届高三上学期10月过程性测试 数学 含答案,共10页。试卷主要包含了10,第II卷必须用0等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map