高中数学高考41第七章 不等式、推理与证明 7 5 合情推理与演绎推理
展开
这是一份高中数学高考41第七章 不等式、推理与证明 7 5 合情推理与演绎推理,共11页。试卷主要包含了合情推理,归纳推理的一般步骤,类比推理的一般步骤,演绎推理,“三段论”可表示为,观察下列关系式,观察下列等式等内容,欢迎下载使用。
§7.5 合情推理与演绎推理最新考纲考情考向分析1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单演绎推理.3.了解合情推理和演绎推理之间的联系和差异.以理解类比推理、归纳推理和演绎推理的推理方法为主,常以演绎推理的方法根据几个人的不同说法作出推理判断进行命题.注重培养学生的推理能力;在高考中以填空题的形式进行考查,属于中低档题. 1.合情推理2.归纳推理的一般步骤(1)通过观察 发现某些 ;(2)从已知的 中推出一个明确表述的 .3.类比推理的一般步骤(1)找出两类事物之间的 或 .(2)用一类事物的性质去推测另一类事物的性质,得出一个 .4.演绎推理由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常叫做 .简言之,演绎推理是由 到 的推理.5.“三段论”可表示为①大前提:M是P;②小前提:S是M;③结论:所以,S是P.概念方法微思考1.合情推理所得结论一定是正确的吗? 2.合情推理对我们学习数学有什么帮助? 3.“三段论”是演绎推理的一般模式,包括大前提,小前提,结论,在用其进行推理时,大前提是否可以省略? 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是an=n(n∈N+).( )(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )题组二 教材改编2.已知在数列{an}中,a1=1,当n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是( )A.an=3n-1 B.an=4n-3C.an=n2 D.an=3n-13.在等差数列{an}中,若a10=0,则有a1+a2+…+an=a1+a2+…+a19-n (n<19,n∈N+)成立,类比上述性质,在等比数列{bn}中,若b9=1,则存在的等式为________________.题组三 易错自纠4.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( )A.结论正确 B.大前提不正确C.小前提不正确 D.全不正确5.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.则正确的结论是________.(填序号)6.观察下列关系式:1+x=1+x;2≥1+2x,3≥1+3x,……,由此规律,得到的第n个关系式为________. 题型一 归纳推理 命题点1 与数式有关的的推理 例1 (1)(2018·抚顺模拟)《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113 以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是( )A.18 B.17 C.16 D.15(2)观察下列式子:1+<,1++<,1+++<,…,根据以上式子可以猜想:1+++…+<________.命题点2 与图形变化有关的推理例2 (2019·呼和浩特模拟)分形理论是当今世界十分风靡和活跃的新理论、新学科.其中,把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n=6时,该黑色三角形内去掉小三角形个数为( )A.81 B.121C.364 D.1 093跟踪训练1 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A.21 B.34 C.52 D.55例3 (1)已知{an}为等差数列,a1 010=5,a1+a2+a3+…+a2 019=5×2 019.若{bn}为等比数列,b1 010=5,则{bn}类似的结论是( )A.b1+b2+b3+…+b2 019=5×2 019B.b1b2b3…b2 019=5×2 019C.b1+b2+b3+…+b2 019=52 019D.b1b2b3…b2 019=52 019(2)如图(1)所示,点O是△ABC内任意一点,连接AO,BO,CO,并延长交对边于A1,B1,C1,则++=1,类比猜想:点O是空间四面体V—BCD内的任意一点,如图(2)所示,连接VO,BO,CO,DO并延长分别交面BCD,VCD,VBD,VBC于点V1,B1,C1,D1,则有____________________.跟踪训练2 在平面上,设ha,hb,hc是△ABC三条边上的高,P为三角形内任一点,P到相应三边的距离分别为Pa,Pb,Pc,我们可以得到结论:++=1.把它类比到空间中,则三棱锥中的类似结论为____________________.题型三 演绎推理例4 数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N+).证明:(1)数列是等比数列;(2)Sn+1=4an. 跟踪训练3 某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A,B,C,D,E五辆车,保证每天至少有四辆车可以上路行驶.已知E车周四限行,B车昨天限行,从今天算起,A,C两车连续四天都能上路行驶,E车明天可以上路,由此可知下列推测一定正确的是( )A.今天是周六 B.今天是周四C.A车周三限行 D.C车周五限行1. “对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理( )A.结论正确 B.大前提错误C.小前提错误 D.推理形式错误2.中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期战国初年.算筹记数的方法是:个位、百位、万位…的数按纵式的数码摆出;十位、千位、十万位…的数按横式的数码摆出,如7738可用算筹表示为.1~9这9个数字的纵式与横式的表示数码如上图所示,则的运算结果可用算筹表示为( )3.下列推理是归纳推理的是( )A.M,N为定点,动点P满足||PM|-|PN||=2a<|MN|(a>0),则动点P的轨迹是以M,N为焦点的双曲线B.由a1=2,an=3n-1求出S1,S2,S3,猜想出数列{an}的前n项和Sn的表达式C.由圆x2+y2=r2的面积S=πr2,猜想出椭圆+=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜水艇4.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102.根据上述规律,13+23+33+43+53+63等于( )A.192 B.202 C.212 D.2225.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立80年时为( )A.丙酉年 B.戊申年 C.己申年 D.己酉年6.甲、乙、丙、丁四名同学一起去向老师询问数学学业水平考试成绩等级.老师说:“你们四人中有2人A等,1人B等,1人C等,我现在给甲看乙、丙的成绩等级,给乙看丙的成绩等级,给丙看丁的成绩等级”.看后甲对大家说:“我知道我的成绩等级了”.根据以上信息,则( )A.甲、乙的成绩等级相同B.丁可以知道四人的成绩等级C.乙、丙的成绩等级相同D.乙可以知道四人的成绩等级7.在等差数列{an}中,若公差为d,且a1=d,那么有am+an=am+n,类比上述性质,写出在等比数列{bn}中类似的性质:___________________________________________.8.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n个等式为________.9.已知f(x)=,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2 019(x)的表达式为________.10.如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c2=a2+b2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S1,S2,S3,截面面积为S,类比平面的结论有________.11.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:2=,3=,4=,5=,……,则按照以上规律,若8= 具有 “穿墙术”,则n=________.12.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲,1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2 018这2 017个整数中能被2除余1且被3除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为________.13.一质点从坐标原点出发,按如图的运动轨迹运动,每步运动一个单位,例如第3步结束时该质点所在位置的坐标为(0,1),第4步结束时质点所在位置的坐标为(-1,1),那么第2 018步结束时该质点所在位置的坐标为________.14.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为a1a2a3,传输信息为h1a1a2a3h2,其中h1=a1a2,h2=h1a3,运算规则为:00=0,01=1,10=1,11=0.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )A.01100 B.11010 C.10110 D.1100015.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A.6 B.7 C.8 D.916.分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段AB的长度为a,在线段AB上取两个点C,D,使得AC=DB=AB,以CD为一边在线段AB的上方做一个正六边形,然后去掉线段CD,得到图2中的图形;对图2中的最上方的线段EF做相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第n个图形(图1为第1个图形)中的所有线段长的和为Sn,现给出有关数列{Sn}的四个命题:①数列{Sn}不是等比数列;②数列{Sn}是递增数列;③存在最小的正数a,使得对任意的正整数n,都有Sn>2 019;④存在最大的正数a,使得对任意的正整数n,都有Sn<2 019.其中真命题的序号是________.(请写出所有真命题的序号)
相关试卷
这是一份高中数学高考43第七章 不等式、推理与证明 7 5 合情推理与演绎推理,共11页。试卷主要包含了合情推理,归纳推理的一般步骤,类比推理的一般步骤,演绎推理,“三段论”可表示为,观察下列关系式等内容,欢迎下载使用。
这是一份高中数学高考42第七章 不等式、推理与证明 7 6 直接证明与间接证明,共9页。试卷主要包含了直接证明,用反证法证明命题等内容,欢迎下载使用。
这是一份高中数学高考42第七章 不等式、推理与证明 7 4 基本不等式及其应用,共9页。试卷主要包含了基本不等式,几个重要的不等式,算术平均数与几何平均数,利用均值不等式求最值问题等内容,欢迎下载使用。