


北师大版2023年中考数学一轮复习《生活中的轴对称》单元练习(含答案)
展开北师大版2023年中考数学一轮复习
《生活中的轴对称》单元练习
一 、选择题
1.如图,下面图形中不是轴对称图形的是( )
A. B. C. D.
2.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )
A.30° B.45° C.60° D.75°
3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
4.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
5.下列说法正确的是( )
A.两个全等的三角形一定关于某条直线对称
B.关于某条直线的对称的两个三角形一定全等
C.直角三角形是轴对称图形
D.锐角三角形都是轴对称图形
6.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P.
下列结论中:①AB=CD;
②点P在直线l上;
③若A、C是对称点,则l垂直平分线段AC;
④若B、D是对称点,则PB=PD.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
7.对于下列命题:
①关于某一直线成轴对称的两个三角形全等;
②等腰三角形的对称轴是顶角的平分线;
③一条线段的两个端点一定是关于经过该线段中点的直线的对称点;
④如果两个三角形全等,那么它们关于某直线成轴对称.
其中真命题的个数为( )
A.0 B.1 C.2 D.3
8.如图,△ABC与△DEF关于直线MN对称,则以下结论中错误的是( )
A.AB∥DF
B.∠B=∠E
C.AB=DE
D.A,D两点所连的线段被MN垂直平分
9.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )
10.如图,△ABC和△A′B′C′关于直线对称,下列结论中:
①△ABC≌△A′B′C′;
②∠BAC′=∠B′AC;
③l垂直平分CC′;
④直线BC和B′C′的交点不一定在l上,
正确的有( )
A.4个 B.3个 C.2个 D.1个
11.如图,在数轴上,点A与点C到点B的距离相等,A,B两点所对应的实数分别是﹣和1,则点C对应的实数是( )
A.1+ B.2+ C.2﹣1 D.2+1
12.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中( )
A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD
二 、填空题
13.在镜子中看到的一串数字是“”,则这串数字是 .
14.如图,图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有_____条对称轴.
15.若直角三角形是轴对称图形,则其三个内角的度数分别为________.
16.如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为 .
17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n= .
18.如图,在平面直角坐标系中,一颗棋子从点P(0,﹣2)处开始依次关于点A(﹣1,﹣1),B(1,2),C(2,1)作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,…,如此下去.则经过第2021次跳动之后,棋子落点的坐标为 .
三 、作图题
19.在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为 ;
(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为 .
四 、解答题
20.已知点A(2m+n,2),B (1,n﹣m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
21.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.
求证:EF=EC.
22.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.
23.如图,已知P是线段CD的垂直平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.
求证:(1)OC=OD;
(2)OP平分∠AOB.
24.如图.在△ABC中,BE是角平分线,AD⊥BE,垂足为D.
求证:∠2=∠1+∠C.
25.如图,把△ABC沿DE折叠,使点A落在四边形BCDE内部的点A'处.
(1)写出图中一对全等的三角形,并写出它们的所有对应角.
(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含有x或y的式子表示)?
(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.
26.如图①,将矩形ABCD沿DE折叠使点A落在点A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.
(1)求证:EG=CH;
(2)已知AF=,求AD和AB的长.
答案
1.B
2.C
3.A
4.D
5.B
6.D
7.B
8.A
9.B
10.B
11.B
12.B
13.答案为:309087
14.答案为:4
15.答案为:90°,45°,45°.
16.答案为:5cm.
17.答案为:3.
18.答案为:(4,4)
19.解:(1)B点关于y轴的对称点坐标为(﹣3,2),答案为:(﹣3,2);
(2)如图所示:
(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).答案为:(a﹣3,b+2).
20.解:(1)∵点A(2m+n,2),B (1,n﹣m),A、B关于x轴对称,
∴,解得;
(2)∵点A(2m+n,2),B (1,n﹣m),A、B关于y轴对称,
∴,解得:.
21.证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,
∴DA=DF,AE=FE,∠ADE=∠FDE,∴∠B=∠DFB,
∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,∴∠ADE=∠B,∴DE∥BC,
而D为AB的中点,∴DE为△ABC的中位线,∴AE=EC,∴EF=EC.
22.解:∵AD平分∠BAC
∴∠BAD=∠DAE,
∵∠BAD=29°,
∴∠DAE=29°,
∴∠BAC=58°,
∵DE垂直平分AC,
∴AD=DC,
∴∠DAE=∠DCA=29°,
∵∠BAC+∠DCA+∠B=180°,
∴∠B=93°.
23.证明:(1)∵P在CD的垂直平分线上,
∴PC=PD.
又∵OP=OP,
∴Rt△OPC≌Rt△OPD(HL).
∴OC=OD.
(2)由(1)Rt△OPC≌△OPD知∠AOP=∠BOP.
24.证明:如图,延长AD交BC于点F,
∵BE是角平分线,AD⊥BE,
∴△ABF是等腰三角形,且∠2=∠AFB,
又∵∠AFB=∠1+∠C,
∴∠2=∠1+∠C.
25.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,
∠AED=∠A'ED,∠ADE=∠A'DE.
(2)∠1=180°-2x,∠2=180°-2y.
(3)∠1+∠2=360°-2(x+y)=360°-2(180°-∠A)=2∠A.
规律为∠1+∠2=2∠A.
26.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE,
∵AE=A′E=BC,∠AEF=∠BCE,
∴△AEF≌△BCE,
∴△GEF≌△HCE,
∴EG=CH;
(2)∵AF=FG=,∠FDG=45°,
∴FD=2,AD=2+;
∵AF=FG=HE=EB=,AE=AD=2+,
∴AB=AE+EB=2++=2+2.
北师大版2023年中考数学一轮复习《整式的乘除》单元练习(含答案): 这是一份北师大版2023年中考数学一轮复习《整式的乘除》单元练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北师大版2023年中考数学一轮复习《圆》单元练习(含答案): 这是一份北师大版2023年中考数学一轮复习《圆》单元练习(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北师大版2023年中考数学一轮复习《实数》单元练习(含答案): 这是一份北师大版2023年中考数学一轮复习《实数》单元练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。