终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析)

    立即下载
    加入资料篮
    【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析)第1页
    【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析)第2页
    【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析)

    展开

    这是一份【中考一轮复习】2023年中考数学复习训练——第15讲 二次函数B(含解析),共26页。
    1.关于二次函数的最大值或最小值,下列说法正确的是 ( )
    A.有最大值4B.有最小值4C.有最大值6D.有最小值6
    2.下列关于二次函数的图像和性质的叙述中,正确的是 ( )
    A.点在函数图像上B.开口方向向上
    C.对称轴是直线D.与直线有两个交点
    3.已知二次函数,当函数值y随x值的增大而增大时,x的取值范围是( )
    A.B.C.D.
    4.已知二次函数,当时,的最小值为,则的值为( )
    A.或4B.或C.或4D.或4
    5.函数的图象是由函数的图象轴上方部分不变,下方部分沿轴向上翻折而成,如图所示,则下列结论正确的是
    ( )
    ① ;②; ③;④将图象向上平移1个单位后与直线有3个交点.
    A.①②B.①③C.②③④D.①③④
    二、填空题
    6.二次函数的最小值为________.
    7.已知二次函数y=a(x-3)2+c(a,c为常数,a<0),当自变量x分别取,0,4时,所对应的函数值分别为,,,则,,的大小关系为________(用“<”连接).
    8.如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DEAB,交AC于点E,EFBC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为 _____.
    9.在平面直角坐标系中,点和点的坐标分别为和,抛物线与线段只有一个公共点,则的取值范围是______.
    10.如图1,在四边形中,,动点P,Q同时从点A出发,点P以的速度沿向点B运动(运动到B点即停止),点Q以的速度沿折线向终点C运动,设点Q的运动时间为,的面积为,若y与x之间的函数关系的图像如图2所示,当时,则____________.
    三、解答题
    11.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:
    (1)直接写出y与x的函数关系式;
    (2)若每天销售所得利润为1200元,那么销售单价应定为多少元?
    (3)当销售单价为多少元时,每天获利最大?最大利润是多少元?
    12.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
    (1)求y与x的函数关系式(不要求写出自变量x的取值范围);
    (2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
    (3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
    13.如图,已知二次函数的图像交轴于点,,交轴于点.
    (1)求这个二次函数的表达式;
    (2)如图,点从点出发,以每秒个单位长度的速度沿线段向点运动,点从点出发,以每秒个单位长度的速度沿线段向点运动,点,同时出发.设运动时间为秒().当为何值时,的面积最大?最大面积是多少?
    (3)已知是抛物线上一点,在直线上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,直接写出点坐标;若不存在,请说明理由.
    14.在平面直角坐标系中,如果点的横坐标和纵坐标相等,则称点为和谐点,例如:点,,,……都是和谐点.
    (1)判断函数的图象上是否存在和谐点,若存在,求出其和谐点的坐标;
    (2)若二次函数的图象上有且只有一个和谐点.
    ①求,的值;
    ②若时,函数的最小值为-1,最大值为3,求实数的取值范围.
    15.已知抛物线与轴交于点和点两点,与轴交于点.
    (1)求抛物线的解析式;
    (2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.
    ①如图1,若点在第三象限,且,求点的坐标;
    ②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.
    16.如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作ACx轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
    (1)求抛物线的关系式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
    (3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
    (4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    参考答案:
    1.D
    【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.
    【解析】解:∵在二次函数中,a=2>0,顶点坐标为(4,6),
    ∴函数有最小值为6.
    故选:D.
    【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.
    2.D
    【分析】A、把x=0代入y=3(x+1)(2﹣x),求函数值再与点的纵坐标进行比较;B、化简二次函数:y=﹣3x2+3x+6,根据a的取值判断开口方向;C、根据对称轴公式计算;D、把函数的问题转化为一元二次方程的问题,根据判别式的取值来判断.
    【解析】解:A、把x=0代入y=3(x+1)(2﹣x),
    得y=6≠2,
    ∴A错误;
    B、化简二次函数:y=﹣3x2+3x+6,
    ∵a=﹣3<0,
    ∴二次函数的图象开口方向向下,
    ∴B错误;
    C、∵二次函数对称轴是直线x
    ∴C错误;
    D、∵3(x+1)(2﹣x)=3x,
    ∴﹣3x2+3x+6=3x,
    ∴﹣3x2+6=0,
    ∵b2﹣4ac=72>0,
    ∴二次函数y=3(x+1)(2﹣x)的图象与直线y=3x有两个交点,
    ∴D正确;
    故选:D.
    【点睛】此题考查了二次函数图象上点的坐标特征、二次函数的性质、一次函数图象上点的坐标特征、正比例函数的性质,掌握这几个知识点的应用,其中函数的问题转化为一元二次方程的问题是解题关键.
    3.B
    【分析】先将函数表达式写成顶点式,根据开口方向和对称轴即可判断.
    【解析】解:∵
    ∵开口向上,对称轴为x=1,
    ∴x>1时,函数值y随x的增大而增大.
    故选:B.
    【点睛】本题考查的是二次函数的图像与性质,比较简单,需要熟练掌握二次函数的图像与性质.
    4.D
    【分析】分两种情况讨论,并且利用二次函数的性质即可解答.
    【解析】解:二次函数的对称轴为:直线,
    (1)当时,当时,随的增大而减小,当,随的增大而增大,
    当时,取得最小值,


    (2)当时,当时,随的增大而增大,当,随的增大而减小,
    当时,取得最小值,


    故选:D.
    【点睛】本题主要考查二次函数的性质,掌握二次函数的性质以及分类讨论思想是解题的关键.
    5.D
    【分析】根据函数图象与x轴交点的横坐标求出对称轴为,进而可得,故①正确;由函数图象与y轴的交点坐标为(0,3),的图象轴上方部分不变,下方部分沿轴向上翻折而成可知c=-3,故②错误;根据对称轴求出b<0,进而可得,故③正确;求出翻折前的二次函数的顶点坐标,然后根据平移的性质可得④正确.
    【解析】解:由函数图象可得:与x轴交点的横坐标为-1和3,
    ∴对称轴为,即,
    ∴整理得:,故①正确;
    ∵与y轴的交点坐标为(0,3),
    可知,开口向上,图中函数图象是由原函数下方部分沿轴向上翻折而成,
    ∴c=-3,故②错误;
    ∵中a>0,,
    ∴b<0,
    又∵c=-3<0,
    ∴,故③正确;
    设抛物线的解析式为,
    代入(0,3)得:,
    解得:a=-1,
    ∴,
    ∴顶点坐标为(1,4),
    ∵点(1,4)向上平移1个单位后的坐标为(1,5),
    ∴将图象向上平移1个单位后与直线有3个交点,故④正确;
    故选:D.
    【点睛】本题考查了二次函数的图象和性质,掌握二次函数的对称轴公式,顶点坐标的求法是解题的关键.
    6.-2
    【分析】由二次函数可直接求解.
    【解析】解:由二次函数可得:开口向上,有最小值,
    ∴二次函数的最小值为-2;
    故答案为-2.
    【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.
    7.<<
    【分析】根据题意可得该二次函数图象的开口向下,对称轴为直线x=3,从而得出当x<3时,y随x的增大而增大,点(4,)关于对称轴直线x=3的对称点为(2,),然后比较横坐标的大小即可得出结论.
    【解析】解:∵二次函数y=a(x-3)2+c(a,c为常数,a<0),
    ∴该二次函数图象的开口向下,对称轴为直线x=3
    ∴当x<3时,y随x的增大而增大,点(4,)关于对称轴直线x=3的对称点为(2,)
    ∵0<2<<3
    ∴<<
    故答案为:<<.
    【点睛】此题考查的是二次函数图象的性质,掌握抛物线对称轴两侧的增减性的判断方法是解题关键.
    8.
    【分析】根据抛物线的对称性知,BC=4,作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,则此时BF=,AB=2BF,即可解决问题.
    【解析】解:∵抛物线的顶点为(2,3),过点(0,0),
    ∴x=4时,y=0,
    ∴BC=4,
    作FH⊥BC于H,当BD=2时,▱BDEF的面积为3,
    ∵3=2FH,
    ∴FH=,
    ∵∠ABC=60°,
    ∴BF==,
    ∵DE∥AB,
    ∴AB=2BF=,
    故答案为:.
    【点睛】本题主要考查了动点的函数图象问题,抛物线的对称性,平行四边形的性质,特殊角的三角函数值等知识,求出BC=4是解题的关键.
    9.或
    【分析】根据抛物线求出对称轴,轴的交点坐标为,顶点坐标为,直线CD的表达式,分两种情况讨论:当时,当时,利用抛物线的性质可知,当越大,则抛物线的开口越小,即可求解.
    【解析】解:抛物线的对称轴为:,当时,,故抛物线与轴的交点坐标为,顶点坐标为,直线CD的表达式,
    当时,且抛物线过点时,
    ,解得(舍去),
    当,抛物线与线段只有一个公共点时,
    即顶点在直线CD上,则,解得,
    当时,且抛物线过点时,
    ,解得,
    当抛物线过点时,
    解得,m=-1
    由抛物线的性质可知,当越大,则抛物线的开口越小,且抛物线与线段只有一个公共点,

    综上所述,的取值范围为或,
    故答案为或.
    【点睛】本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.
    10.
    【分析】根据题意以及函数图像可得出,则点在上运动时,为等腰直角三角形,然后根据三角形面积公式得出当面积最大为时,此时,则,当时,过点作于点,则此时,分别表示出相关线段可得y与x之间的函数解析式,将代入解析式求解即可.
    【解析】解:过点作,垂足为,
    在中,
    ∵,,
    ∴,
    ∵点P的速度为,点Q的速度为,
    ∴,
    ∴,
    在和中,
    ∵,,
    ∴,
    ∴点在上运动时,为等腰直角三角形,
    ∴,
    ∴当点在上运动时,,
    由图像可知,当此时面积最大,或(负值舍去),
    ∴,
    当时,过点作于点,如图:
    此时,
    在中,,,
    ∴,,,
    ∴,
    即,
    所以当时,,
    故答案为:.
    【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.
    11.(1)y=﹣2x+160
    (2)销售单价应定为50元
    (3)当销售单价为54元时,每天获利最大,最大利润1248元
    【分析】(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,用待定系数法可得y=﹣2x+160;
    (2)根据题意得(x﹣30)•(﹣2x+160)=1200,解方程并由销售单价不低于成本且不高于54元,可得销售单价应定为50元;
    (3)设每天获利w元,w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,由二次函数性质可得当销售单价为54元时,每天获利最大,最大利润,1248元.
    【解析】(1)解:设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,
    把(35,90),(40,80)代入得:,
    解得,
    ∴y=﹣2x+160;
    (2)根据题意得:(x﹣30)•(﹣2x+160)=1200,
    解得x1=50,x2=60,
    ∵规定销售单价不低于成本且不高于54元,
    ∴x=50,
    答:销售单价应定为50元;
    (3)设每天获利w元,
    w=(x﹣30)•(﹣2x+160)=﹣2x2+220x﹣4800=﹣2(x﹣55)2+1250,
    ∵﹣2<0,对称轴是直线x=55,
    而x≤54,
    ∴x=54时,w取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),
    答:当销售单价为54元时,每天获利最大,最大利润,1248元.
    【点睛】本题考查一次函数,一元二次方程和二次函数的应用,解题的关键是读懂题意,列出函数关系式和一元二次方程.
    12.(1);
    (2)40元或20元;
    (3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;
    【分析】(1)直接由待定系数法,即可求出一次函数的解析式;
    (2)根据题意,设当天玩具的销售单价是元,然后列出一元二次方程,解方程即可求出答案;
    (3)根据题意,列出w与的关系式,然后利用二次函数的性质,即可求出答案.
    【解析】(1)解:由图可知,设一次函数的解析式为,
    把点(25,50)和点(35,30)代入,得
    ,解得,
    ∴一次函数的解析式为;
    (2)解:根据题意,设当天玩具的销售单价是元,则

    解得:,,
    ∴当天玩具的销售单价是40元或20元;
    (3)解:根据题意,则

    整理得:;
    ∵,
    ∴当时,有最大值,最大值为800;
    ∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.
    【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.
    13.(1)
    (2)当时,的面积最大,最大面积是
    (3)存在,的坐标为或或或
    【分析】用待定系数法可求得二次函数的表达式为;
    过点作轴于点,设面积为,由,,可得,,即得,由二次函数性质可得当秒时,的面积最大,求得其最大面积;
    由,得直线解析式为,设,,分三种情况进行讨论求解.
    【解析】(1)将点,代入中,
    得,
    解这个方程组得,
    二次函数的表达式为;
    (2)过点作轴于点,如图:

    设面积为,
    根据题意得:,.


    在中,令得,






    当时,的面积最大,最大面积是;
    (3)存在点,使以,,,为顶点的四边形是平行四边形,理由如下:
    由,得直线解析式为,
    设,,又,,
    当,是对角线,则,的中点重合,

    解得与重合,舍去或,

    当,为对角线,则,的中点重合,

    解得舍去或,

    当,为对角线,则,的中点重合,

    解得或,
    或,
    综上所述,的坐标为或或或.
    【点睛】本题考查二次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用,解题的关键是用含字母的式子表示相关点的坐标和相关线段的长度.
    14.(1)存在,
    (2)①;
    【分析】(1)根据定义可知,和谐点都在上,联立两直线解析式即可求解;
    (2)①根据题意可知二次函数与相切于点,据此即可求解;
    ②根据①得到解析式,根据二次函数图象的性质分析即可求解.
    (1)
    解:∵点的横坐标和纵坐标相等,则称点为和谐点,
    ∴和谐点都在上,

    解得,
    上的和谐点为;
    (2)
    解:①∵二次函数的图象上有且只有一个和谐点,
    ∴即有两个相等的实数根,

    解得①,
    将代入得,

    联立①②,得,
    ②,

    其顶点坐标为,则最大值为3,
    在时,随的增大而增大,当时,,
    根据对称轴可知,当时,,
    时,函数的最小值为-1,最大值为3,
    根据函数图象可知,当时,函数的最小值为-1,最大值为3,
    实数的取值范围为:.
    【点睛】本题考查了新定义问题,两直线交点问题,一次函数与抛物线交点问题,待定系数法求二次函数解析式,二次函数的性质,理解新定义是解题的关键.
    15.(1)
    (2)①;②或
    【分析】(1)把点,代入,即可求解;
    (2)①过点C作CQ⊥DP于点Q,可得△CPQ为等腰直角三角形,从而得到PQ=CQ,设点,则OD=-m,,再由四边形OCQD为矩形,可得QC=OD=PQ=-m,DQ=OC=3,从而得到,即可求解;②过点E作轴于点M,先求出直线BC的解析式为,证得四边形为菱形,可得,然后根据△CEM∽△CBO,设点,则点,然后分三种情况讨论,即可求解.
    【解析】(1)解:把点,代入得:
    ,解得:,
    ∴抛物线解析式为;
    (2)解:①如图,过点C作CQ⊥DP于点Q,
    ∵点C(0,-3),
    ∴OC=3,
    ∵,
    ∴△CPQ为等腰直角三角形,
    ∴CQ=PQ,
    设点,则OD=-m,,
    ∵轴,
    ∴∠COD=∠ODQ=∠CQD=90°,
    ∴四边形OCQD为矩形,
    ∴QC=OD=PQ=-m,DQ=OC=3,
    ∴,
    ∴,
    解得:或0(舍去),
    ∴点;
    ②如图,过点E作轴于点M,
    令y=0,,
    解得:(舍去),
    ∴点B(-4,0),
    ∴OB=4,
    ∴,
    设直线BC的解析式为,
    把点B(-4,0),C(0,-3)代入得:
    ,解得:,
    ∴直线BC的解析式为,
    ∵点关于直线的对称点落在轴上时,
    ∴,,,
    ∵DP⊥x轴,
    ∴,
    ∴,
    ∴,
    ∴CE=PE,
    ∴,
    ∴四边形为菱形,
    ∵轴,
    ∴△CEM∽△CBO,
    ∴,
    设点, 则点,
    当点P在y轴左侧时,EM=-t,
    当-4<t<0时,,
    ∴,
    ∴,
    解得:或0(舍去),
    ∴,
    ∴四边形的周长为;
    当点P在y轴右侧时,EM=-t,
    当t≤-4时,,
    ∴,解得:或0(舍去),
    此时,
    ∴四边形的周长为;
    当点P在y轴右侧,即t>0时,EM=t,,
    ∴,解得:或0,
    不符合题意,舍去;
    综上所述,四边形的周长为或.
    【点睛】本题主要考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、对称的性质和菱形的判定方法;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用相似比计算线段的长和解一元二次方程是解题的关键.
    16.(1)抛物线的解析式为:y=x2﹣4x+3
    (2)P点坐标为(,)
    (3)h的取值范围为3≤h≤4
    (4)存在,点P的坐标是(,)或(,)或(,)或(,)
    【分析】(1)利用待定系数法可得抛物线的解析式;
    (2)过P作PGy轴,交OE于点G,设P(m,m2﹣4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得△OPE的面积,利用二次函数的最值可得其最大值;
    (3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE的交点坐标、与AE的交点坐标,用含h的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h的取值范围;
    (4)存在四种情况:作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.
    (1)
    解:∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),
    ∴ ,
    解得,
    ∴抛物线的解析式为:y=x2﹣4x+3;
    (2)
    如图1,过P作PGy轴,交OE于点G,
    设P(m,m2﹣4m+3),
    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    设直线OE的解析式为y=kx,把点(3,3)代入得,
    3=3k,
    解得k=1,
    ∴直线OE的解析式为:y=x,
    ∴G(m,m),
    ∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,
    ∴S△OPE=S△OPG+S△EPG
    PG•AE
    3×(﹣m2+5m﹣3)
    (m2﹣5m+3)
    (m)2,
    ∵0,
    ∴当m时,△OPE面积最大,
    此时m2﹣4m+3=,
    ∴P点坐标为(,);
    (3)
    由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),
    抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).
    设直线x=2交OE于点M,交AE于点N,则N(2,3),如图2,
    ∵直线OE的解析式为:y=x,
    ∴M(2,2),
    ∵点F在△OAE内(包括△OAE的边界),
    ∴2≤﹣1+h≤3,
    解得3≤h≤4;
    (4)
    设P(m,m2﹣4m+3),分四种情况:
    ①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y轴,交y轴于M,交l于N,
    ∴∠OMP=∠PNF=90°,
    ∵△OPF是等腰直角三角形,
    ∴OP=PF,∠OPF=90°,
    ∴∠OPM+∠NPF=∠PFN+∠NPF=90°,
    ∴∠OPM=∠PFN,
    ∴△OMP≌△PNF(AAS),
    ∴OM=PN,
    ∵P(m,m2﹣4m+3),
    则﹣m2+4m﹣3=2﹣m,
    解得:m或,
    ∵m>2,不合题意,舍去,
    ∴m,
    此时m2﹣4m+3=,
    ∴P的坐标为(,);
    ②当P在对称轴的左边,且在x轴上方时,
    同理得:2﹣m=m2﹣4m+3,
    解得:m1或m2,
    ∵>2,不合题意,舍去,
    ∴m=,
    此时m2﹣4m+3=,
    ∴P的坐标为(,);
    ③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,
    同理得△ONP≌△PMF,
    ∴PN=FM,
    则﹣m2+4m﹣3=m﹣2,
    解得:m1或m2;
    ∵<2,不合题意,舍去,
    ∴m=,
    此时m2﹣4m+3=,
    P的坐标为(,);
    ④当P在对称轴的右边,且在x轴上方时,如图5,

    同理得m2﹣4m+3=m﹣2,
    解得:m或(舍),
    P的坐标为:(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    【点睛】本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想是解决问题的关键.
    销售单价x(元/件)

    35
    40
    45

    每天销售数量y(件)

    90
    80
    70

    相关试卷

    【中考一轮复习】2023年中考数学复习训练——第3讲 分式(含解析):

    这是一份【中考一轮复习】2023年中考数学复习训练——第3讲 分式(含解析),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    【中考一轮复习】2023年中考数学复习训练——第33讲 概率(含解析):

    这是一份【中考一轮复习】2023年中考数学复习训练——第33讲 概率(含解析),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    【中考一轮复习】2023年中考数学复习训练——第2讲 整式(含解析):

    这是一份【中考一轮复习】2023年中考数学复习训练——第2讲 整式(含解析),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map