所属成套资源:中考数学二轮专题复习《圆》解答题专项练习(含答案)
中考数学二轮专题复习《圆》解答题专项练习七(含答案)
展开
这是一份中考数学二轮专题复习《圆》解答题专项练习七(含答案),共12页。试卷主要包含了5,求直径AB的长.等内容,欢迎下载使用。
中考数学二轮专题复习《圆》解答题专项练习七1.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论. 2.已知AB为⊙O的直径,点C为的中点,BD为弦,CE⊥BD于点E,(1)如图1,求证:CE=DE;(2)如图2,连接OE,求∠OEB的度数;(3)如图3,在(2)条件下,延长CE,交直径AB于点F,延长EO,交⊙O于点G,连接BG,CE=2,EF=3,求△EBG的面积. 3.如图,在⊙O中,弦AB=CD,且相交于点E,连接OE.(1)如图1,求证:EO平分∠BEC;(2)如图2,点F在半径OD的延长线上,连接AC、AF,当四边形ACDF是平行四边形时,求证:OE=DE;(3)如图3,在(2)的条件下,AF切⊙O于点A,点H为弧BC上一点,连接AH、BH、DH,若BH=AH,AB=,求DH的长. 4.如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长. 5.已知AB为⊙O的直径,弦CD⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积. 6.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长. 7.如图①,在平面直角坐标系中,直线y=﹣x+与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.(1)求⊙A的半径;(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长. 8.如图,已知⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连接PD.(1)求证:PD是⊙O的切线;(2)求证:PD2=PB·PA;(3)若PD=4,tan∠CDB=0.5,求直径AB的长.
0.参考答案1. (1)证明:连结EF.∵AE平分∠BAC,∴∠FAE=∠CAE.∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线.(2)解:连结FD.设⊙F的半径为r,则r2=(r-1)2+22,解得r=,即⊙F的半径为.(3)解:AG=AD+2CD.证明:作FR⊥AD于点R,则∠FRC=90°.又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD.∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.2.解:(1)证明:如图1中,连接CD、OC. ∵点C是中点,∴=,∴∠AOC=∠BOC,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOC=90°,∴∠D=45°,∵CE⊥BD,∴∠CED=90°,∴∠D=∠DCE=45°,∴CE=DE.(2)证明:如图2中,连接OD,OC在△OED和△OEC中,,∴△OED≌△OEC,∵∠CED=90°,∴∠OED=∠CEO=135°,∴∠OEB=45°.(3)解:如图3中,过O作OM⊥BD于M,BN⊥EG于N,则∠EMO=90°,连接OC.∵CE=2,∴DE=2,设EM=x,则BM=DM=2+x,∴BE=2x+2,∵∠OEB=45°,则BM=DM=2+x,∴OM=x,∵∠OEB=45°,∴∠CEB=∠EMO,∴EF∥OM.∴=,即=,解得x=2或(﹣舍弃),∴OE=2,BM=4,OM=2,BN=3,∴OB=2∴EG=OE+OG=2+2,∴S△EBG=•EG•BN=(2+2)×=6+3.3.解:(1)证明:过点O作OH⊥CD,OM⊥AB,垂足分别为H、M,如图1所示,∵AB=CD,∴OH=OM,∴EO平分∠BEC;(2)连接OA、BD,如右图2所示,∵AB=CD∴,∴∴AC=BD,又∵∠DBE=∠ACE,∠CEA=∠BED,∴△CEA≌△BED,∴AE=DE,又∵OE平分∠CEB,∠BED=∠CEA,∴∠OEC=∠OEB,∴∠OEA=∠OED,∵OE=OE,∴△AOE≌△DOE,∴∠DOE=∠DOA,又∵四边形CAFD是平行四边形,∴∠F=∠C=∠ODE,∴∠C=∠DOA=∠EOD=∠F=∠ODE,∴∠EOD=∠EDO,∴OE=DE;(3)如图3所示,连接OA,则OA⊥AF,∵四边形AFDC是平行四边形,∴CD∥AF,∴OA⊥CD,∴,∴OD⊥AB,∵OE=DE,∴OG=OD=AO,∴∠AOD=60°,∴∠AHB=∠AOD=60°,过点A作AM⊥BH,则HM=AH,AM=AH,∴BM=BH﹣HM=AH﹣AH=AH,由勾股定理得,AB2=BM2+AM2,即21=,得AH=3,∴BH=2,∵OA===BD,过点B作BQ⊥DH于点Q,∠BHQ=30°,∴BQ=,HQ==3,∴DQ==2,∴DH=HQ+DQ=3+2=5,即DH=5.4.解:(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.5.解:(1)证明:∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠BDC=∠DFB;(2)证明:如图2,连接FO并延长交BD于点M,连接OD,在△FOD和FOB中,∴△FOD≌△FOB(SSS),∴∠DFO=∠BFO,∵FD=FB,∴FM⊥BD,∴BM=DM=BD,∵OF=OB,∴∠OFB=∠OBF,∵FH∥CD,∴∠CEG=∠FGB=90°,在△FGB和△FBM中,∴△FGB≌△BMF(AAS),∴FG=BM,∴BD=2FG;(3)解:如图3,∵DH:HG=3:5,∴设DH=3m,GH=5m,∵△FGB≌△BMF,∴FM=BG,在△FHM和△BHG中,∴△FHM≌△BHG(AAS),∴HM=GH=5m,DM=8m,BH=13m,在Rt△BGH中,HB=13m,GH=5m,由勾股定理得:GB=12m,在Rt△FGO中,FG=8m,OG=5,OF=OB=12m﹣5,∵FG2+OG2=OF2,∴(12m﹣5)2=(8m)2+52,解得:m1=,m2=0(舍去);∴OB=24,DM=12,OF=OB=13,AB=26,∵AB为⊙O的直径,∴∠ADB=90°,∴AD==10,∴S△ADF=×AD×DM=60.6.解:(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.7.解:8.解:(1)证明:连接OD,OC.∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°.∵直径AB⊥CD,∴O,P是CD垂直平分线上的点,∴OD=OC,PD=PC.又∵OP=OP,∴△ODP≌△OCP,∴∠ODP=∠OCP=90°.又∵OD是⊙O的半径,∴PD是⊙O的切线.(2)证明:∵∠ODP=90°,∴∠PDB+∠ODB=90°.∵AB是直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠PDB=∠ADO=∠A.又∵∠DPB=∠APD,∴△DPB∽△APD,∴PD∶PA=PB∶PD,∴PD2=PB·PA.(3)∵∠A+∠ABD=90°=∠CDB+∠ABD,∴∠A=∠CDB.又∵tan∠CDB=0.5,∴tanA=0.5,∴AD=2BD.∵△DPB∽△APD,∴PD∶PA=PB∶PD=BD∶DA=1:2.又∵PD=4,∴PA=8,PB=2,∴AB=6.
相关试卷
这是一份中考数学二轮专题复习《圆》解答题专项练习一(含答案),共10页。
这是一份中考数学二轮专题复习《圆》解答题专项练习四(含答案),共11页。
这是一份中考数学二轮专题复习《圆》解答题专项练习十(含答案),共12页。