开学活动
搜索
    上传资料 赚现金

    初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第1页
    初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第2页
    初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题35相交线与平行线(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    专题35相交线与平行线(2)(全国一年)
    学校:___________姓名:___________班级:___________考号:___________


    一、单选题
    1.(2020·贵州铜仁?中考真题)如图,直线AB∥CD,∠3=70°,则∠1=(  )

    A.70° B.100° C.110° D.120°
    【答案】C
    【解析】
    【分析】
    直接利用平行线的性质得出∠1=∠2,进而得出答案.
    【详解】
    ∵直线AB∥CD,
    ∴∠1=∠2,
    ∵∠3=70°,∠2+∠3=180°,
    ∴∠2=180°﹣∠3=180°﹣70°=110°,
    ∴∠1=110°.
    故选:C.
    【点睛】
    此题主要考查了平行线的性质,求出∠2=110°是解答本题的关键.
    2.(2020·贵州遵义?中考真题)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为(  )

    A.30° B.45° C.55° D.60°
    【答案】B
    【解析】
    【分析】
    根据平行线的性质即可得到结论.
    【详解】
    解:如图

    ∵AB∥CD,
    ∴∠1=∠D=45°,
    故选:B.
    【点睛】
    本题考查了平行线的性质以及直角三角板的各角度数,解答关键是根据利用平行线的性质找到相应角度之间的关系.
    3.(2020·湖南中考真题)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为(  )

    A.70° B.65° C.35° D.5°
    【答案】B
    【解析】
    【分析】
    作CF∥AB,根据平行线的性质可以得到∠1=∠BCF,∠FCE=∠2,从而可得∠BCE的度数,本题得以解决.
    【详解】
    作CF∥AB,

    ∵AB∥DE,
    ∴CF∥DE,
    ∴AB∥DE∥DE,
    ∴∠1=∠BCF,∠FCE=∠2,
    ∵∠1=30°,∠2=35°,
    ∴∠BCF=30°,∠FCE=35°,
    ∴∠BCE=65°,
    故选:B.
    【点睛】
    本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.
    4.(2020·山东聊城?中考真题)如图,在中,,,点是边上任意一点,过点作交于点,则的度数是( ).

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据等腰三角形的性质可得∠B=∠C,进而可根据三角形的内角和定理求出∠A的度数,然后根据平行线的性质可得∠DEC=∠A,进一步即可求出结果.
    【详解】
    解:∵,,
    ∴∠B=∠C=65°,
    ∴∠A=180°-∠B-∠C=50°,
    ∵DF∥AB,
    ∴∠DEC=∠A=50°,
    ∴∠FEC=130°.
    故选:B.
    【点睛】
    本题考查了等腰三角形的性质、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题的关键.
    5.(2020·山东枣庄?中考真题)一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )

    A.10° B.15° C.18° D.30°
    【答案】B
    【解析】
    【分析】
    直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
    【详解】
    由题意可得:∠EDF=45°,∠ABC=30°,
    ∵AB∥CF,
    ∴∠ABD=∠EDF=45°,
    ∴∠DBC=45°﹣30°=15°.
    故选B.
    【点睛】
    本题考查的是平行线的性质,熟练掌握这一点是解题的关键.


    二、填空题
    6.(2020·新疆中考真题)如图,若AB∥CD,∠A=110°,则∠1=_____°.

    【答案】70
    【解析】
    【分析】
    先根据平行线的性质求出∠2=∠A=110°,再由平角的定义求出∠1的度数即可.
    【详解】
    如图,

    ∵AB∥CD,
    ∴∠2=∠A=110°.
    又∵∠1+∠2=180°,
    ∴∠1=180°﹣∠2=180°﹣110°=70°.
    故答案为:70.
    【点睛】
    本题主要考查了平行线的性质,掌握并熟练运用“两直线平行,同位角相等”是解答此题的关键.
    7.(2020·贵州铜仁?中考真题)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.
    【答案】7或17.
    【解析】
    【分析】
    分两种情况讨论,EF在AB,CD之间或EF在AB,CD同侧,进而得出结论.
    【详解】
    解:分两种情况:
    ①当EF在AB,CD之间时,如图:

    ∵AB与CD的距离是12cm,EF与CD的距离是5cm,
    ∴EF与AB的距离为12﹣5=7(cm).
    ②当EF在AB,CD同侧时,如图:

    ∵AB与CD的距离是12cm,EF与CD的距离是5cm,
    ∴EF与AB的距离为12+5=17(cm).
    综上所述,EF与AB的距离为7cm或17cm.
    故答案为:7或17.
    【点睛】
    此题主要考查线段之间的距离,解题的关键是根据题意分情况作图进行求解.
    8.(2020·浙江杭州?中考真题)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A=_____.

    【答案】20°
    【解析】
    【分析】
    直接利用平行线的性质得出∠ABF=50°,进而利用三角形外角的性质得出答案.
    【详解】
    ∵AB∥CD,
    ∴∠ABF+∠EFC=180°,
    ∵∠EFC=130°,
    ∴∠ABF=50°,
    ∵∠A+∠E=∠ABF=50°,∠E=30°,
    ∴∠A=20°.
    故答案为:20°.
    【点睛】
    此题主要考查了平行线的性质以及三角形外角的性质,求出∠ABF=50°是解答此题的关键.
    9.(2020·贵州遵义?中考真题)如图,对折矩形纸片使与重合,得到折痕,再把纸片展平.是上一点,将沿折叠,使点的对应点落在上.若,则的长是_________.

    【答案】
    【解析】
    【分析】
    在Rt△A´BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.
    【详解】
    解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
    ∴AB=2BM,∠A′MB=90°,MN∥BC.
    ∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
    ∴A′B=AB=2BM.
    在Rt△A′MB中,∵∠A′MB=90°,
    ∴sin∠MA′B=,
    ∴∠MA′B=30°,
    ∵MN∥BC,
    ∴∠CBA′=∠MA′B=30°,
    ∵∠ABC=90°,
    ∴∠ABA′=60°,
    ∴∠ABE=∠EBA′=30°,
    ∴BE=.
    故答案为:.
    【点睛】
    本题考查了矩形与折叠,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.
    10.(2020·贵州遵义?中考真题)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是_____.

    【答案】
    【解析】
    【分析】
    在Rt△A'BM中,利用轴对称的性质与锐角三角函数求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.
    【详解】
    解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
    ∴AB=2BM,∠A′MB=90°,MN∥BC.
    ∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
    ∴A′B=AB=2BM.
    在Rt△A′MB中,∵∠A′MB=90°,
    ∴sin∠MA′B= =,
    ∴∠MA′B=30°,
    ∵MN∥BC,
    ∴∠CBA′=∠MA′B=30°,
    ∵∠ABC=90°, ∴∠ABA′=60°,
    ∴∠ABE=∠EBA′=30°,


    故答案为:.
    【点睛】
    本题考查了矩形的性质,翻折变换,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.

    三、解答题
    11.(2020·浙江绍兴?中考真题)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.
    (1)若AD的长为2.求CF的长.
    (2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.

    【答案】(1)2;(2)当∠B=60°时,∠F=30°(答案不唯一).
    【解析】
    【分析】
    (1)由平行四边形的性质得出AD∥CF,则∠DAE=∠CFE,∠ADE=∠FCE,由点E是CD的中点,得出DE=CE,由AAS证得△ADE≌△FCE,即可得出结果;
    (2)添加一个条件当∠B=60°时,由直角三角形的性质即可得出结果(答案不唯一).
    【详解】
    解:(1)∵四边形ABCD是平行四边形,
    ∴AD∥CF,
    ∴∠DAE=∠CFE,∠ADE=∠FCE,
    ∵点E是CD的中点,
    ∴DE=CE,
    在△ADE和△FCE中, ,
    ∴△ADE≌△FCE(AAS),
    ∴CF=AD=2;
    (2)∵∠BAF=90°,
    添加一个条件:当∠B=60°时,∠F=90°-60°=30°(答案不唯一).
    【点睛】
    本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.
    12.(2020·贵州遵义?中考真题)如图,是的直径,点是上一点,的平分线交于点,过点作交的延长线于点.

    (1)求证:是的切线;
    (2)过点作于点,连接.若,,求的长度.
    【答案】(1)见解析;(2)
    【解析】
    【分析】
    (1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;
    (2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.
    【详解】
    解:(1)连接OD,如图:
    ∵OA=OD,
    ∴∠OAD=∠ADO,
    ∵AD平分∠CAB,
    ∴∠DAE=∠OAD,
    ∴∠ADO=∠DAE,
    ∴OD∥AE,
    ∵DE∥BC,
    ∴∠E=90°,
    ∴∠ODE=180°−∠E=90°,
    ∴DE是⊙O的切线;

    (2)因为直径,则
    ∵,
    ∴OB=3
    ∴,
    ∵∠ADB=∠DFB=90°, ∠B=∠B
    ∴△DBF∽△ABD


    所以.
    【点睛】
    本题考查了切线的判定、相似三角形的判定与性质、平行线的性质等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.
    13.(2020·山东济宁?中考真题)如图,在△ABC中,AB=AC,点P在BC上.
    (1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)
    (2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.

    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)根据相似三角形的性质可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD与AC的交点为D即可;
    (2)利用外角的性质以及(1)中∠CPD=∠BAP可得∠CPD =∠ABC,再根据平行线的判定即可.
    【详解】
    解:(1)∵△PCD∽△ABP,
    ∴∠CPD=∠BAP,
    故作∠CPD=∠BAP即可,
    如图,即为所作图形,

    (2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,
    ∴∠BAP =∠ABC,
    ∴∠BAP=∠CPD=∠ABC,
    即∠CPD =∠ABC,
    ∴PD∥AB.
    【点睛】
    本题考查了尺规作图,相似三角形的性质,外角的性质,难度不大,解题的关键是掌握尺规作图的基本作法.
    14.(2020·浙江绍兴?中考真题)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.
    (1)当α=30°时,求点C′到直线OF的距离.
    (2)在图1中,取A′B′的中点P,连结C′P,如图2.
    ①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.
    ②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.

    【答案】(1)点C′到直线OF的距离为2;(2)①点C′到直线DE的距离为2±2;②2≤d<或d=3.
    【解析】
    【分析】
    (1)过点C′作C′H⊥OF于H.根据直角三角形的边角关系,解直角三角形求出CH即可.
    (2)①分两种情形:当C′P∥OF时,过点C′作C′M⊥OF于M;当C′P∥DG时,过点C′作C′N⊥FG于N.通过解直角三角形,分别求出C′M,C′N即可.
    ②设d为所求的距离.第一种情形:当点A′落在DE上时,连接OA′,延长ED交OC于M.当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.结合图象可得结论.
    第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2;当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.求出QG可得结论.
    第三种情形:当A′P经过点F时,此时显然d=3.综上所述即可得结论.
    【详解】
    解:(1)如图,

    过点C′作C′H⊥OF于H.
    ∵△A′B′C′是由△ABC绕点O逆时针旋转得到,
    ∴C′O=CO=4,
    在Rt△HC′中,
    ∵∠HC′O=α=30°,
    ∴C′H=C′O•cos30°=2,
    ∴点C′到直线OF的距离为2.
    (2)①如图,当C′P∥OF时,过点C′作C′M⊥OF于M.

    ∵△A′B′C′为等腰直角三角形,P为A′B′的中点,
    ∴∠A′C′P=45°,
    ∵∠A′C′O=90°,
    ∴∠OC′P=135°.
    ∵C′P∥OF,
    ∴∠O=180°﹣∠OC′P=45°,
    ∴△OC′M是等腰直角三角形,
    ∵OC′=4,
    ∴C′M=C′O•cos45°=4×=,
    ∴点C′到直线DE的距离为.
    如图,当C′P∥DG时,过点C′作C′N⊥FG于N.

    同法可证△OC′N是等腰直角三角形,
    ∴C′N=,
    ∵GD=2,
    ∴点C′到直线DE的距离为.
    ②设d为所求的距离.
    第一种情形:如图,当点A′落在DE上时,连接OA′,延长ED交OC于M.

    ∵OC=4,AC=2,∠ACO=90°,

    ∵OM=2,∠OMA′=90°,
    ∴A′M===4,
    又∵OG=2,
    ∴DM=2,
    ∴A′D=A′M-DM=4-2=2,
    即d=2,
    如图,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.

    ∵P为A′B′的中点,∠A′C′B′=90°,
    ∴PQ∥A′C′,

    ∵B′C′=2
    ∴PQ=1,C'Q=1,
    ∴Q点为B′C′的中点,也是旋转前BC的中点,
    ∴OQ=OC'+C'Q=5
    ∴OP==,
    ∴PM=,
    ∴PD=,
    ∴d=﹣2,
    ∴2≤d≤﹣2.
    第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,
    如图,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.

    由上可知OP=,OF=5,
    ∴FP===1,
    ∵OF=OT,PF=PT,∠F=∠PTO=90°,
    ∴Rt△OPF≌Rt△OPT(HL),
    ∴∠FOP=∠TOP,
    ∵PR∥OQ,
    ∴∠OPR=∠POF,
    ∴∠OPR=∠POR,
    ∴OR=PR,
    ∵PT2+TR2=PR2,

    ∴PR=2.6,RT=2.4,
    ∵△B′PR∽△B′QO,
    ∴=,
    ∴=,
    ∴OQ=,
    ∴QG=OQ﹣OG=,即d=
    ∴2﹣2≤d<,
    第三种情形:当A′P经过点F时,如图,
    此时FG=3,即d=3.

    综上所述,2≤d<或d=3.
    【点睛】
    (1)本题考查了通过解直角三角形求线段长,解决本题的关键是构建直角三角形,熟练掌握直角三角形中边角关系.
    (2)①本题综合性较强,考查了平行线的性质,解直角三角形,解决本题的关键是正确理解题意,能够根据题目条件进行分类讨论,然后通过解直角三角形求出相应的线段长即可.②本题综合性较强,考查了辅助线的作法,平行线的性质以及解直角三角形,解决本题的关键是正确理解题意,能够根据情况对题目进行分类讨论,通过不同情形,能够作出辅助线,在解决本题的过程中要求熟练掌握直角三角形中的边角关系.
    15.(2020·湖南中考真题)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.
    (1)如图1,当D,B,F共线时,求证:
    ①EB=EP;
    ②∠EFP=30°;
    (2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.

    【答案】(1)①见解析 ②30°(2)见解析
    【解析】
    【分析】
    (1)①本题主要考查通过角度计算求证平行,继而证明△CBP是直角三角形,根据直角三角形斜边中线可得结论.
    ②本题以上一问结论为解题依据,考查平行线以及垂直平分线的应用,根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°.
    (2)本题主要考查辅助线的做法以及垂直平分线性质的应用,需要延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB(SAS),再由EF是DQ的垂直平分线,可得结论.
    【详解】
    证明(1)①∵∠ACB=90°,∠ABC=30°
    ∴∠A=90°﹣30°=60°
    同理∠EDF=60°
    ∴∠A=∠EDF=60°
    ∴AC∥DE
    ∴∠DMB=∠ACB=90°
    ∵D是Rt△ABC斜边AB的中点,AC∥DM

    即M是BC的中点
    ∵EP=CE,即E是PC的中点
    ∴ED∥BP
    ∴∠CBP=∠DMB=90°
    ∴△CBP是直角三角形
    ∴BE=PC=EP
    ②∵∠ABC=∠DFE=30°
    ∴BC∥EF
    由①知:∠CBP=90°
    ∴BP⊥EF
    ∵EB=EP
    ∴EF是线段BP的垂直平分线
    ∴PF=BF
    ∴∠PFE=∠BFE=30°
    (2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ

    ∵EC=EP,∠DEC=∠QEP
    ∴△QEP≌△DEC(SAS)
    则PQ=DC=DB
    ∵QE=DE,∠DEF=90°
    ∴EF是DQ的垂直平分线
    ∴QF=DF
    ∵CD=AD
    ∴∠CDA=∠A=60°
    ∴∠CDB=120°
    ∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP
    ∴△FQP≌△FDB(SAS)
    ∴∠QFP=∠BFD
    ∵EF是DQ的垂直平分线
    ∴∠QFE=∠EFD=30°
    ∴∠QFP+∠EFP=30°
    ∴∠BFD+∠EFP=30°
    【点睛】
    本题考点较多,涉及平行与角等的互推,垂直平分线的应用,全等的证明,特殊角度的利用,难度主要在于辅助线的构造,该类型题目必须多做专题训练以培养题感.




















    相关试卷

    初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共77页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题54图形的相似(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题54图形的相似(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共233页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共130页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map