初中数学中考复习 专题32反比例函数(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)
展开专题32反比例函数(2)(全国一年)
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.
【答案】
【解析】
【分析】
直接利用位似图形的性质以及结合A点坐标直接得出点A′的坐标.利用待定系数法即可求得反比例函数的解析式.
【详解】
∵以原点O为位似中心,将线段OA放大为原来的2倍,得到OA',A(-2,1),
∴点A的对应点A′的坐标是:(-4,2)或(4,-2).
设反比例函数的解析式为(),
∴,
∴反比例函数的解析式为:.
故答案为:.
【点睛】
本题主要考查了位似变换、坐标与图形的性质以及待定系数法求反比例函数的解析式,正确把握位似图形的性质是解题关键.
2.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=_____.
【答案】﹣12
【解析】
【分析】
根据反比例函数比例系数的几何意义即可解决问题.
【详解】
解:∵AB⊥OB,
∴S△AOB==6,
∴k=±12,
∵反比例函数的图象在二四象限,
∴k<0,
∴k=﹣12,
故答案为﹣12.
【点睛】
此题主要考查反比例函数的图像与性质,解题的关键是熟知反比例函数比例系数的几何意义.
3.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=,则k=_____.
【答案】
【解析】
【分析】
通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.
【详解】
解:过点M作MN⊥AD,垂足为N,则MN=AD=3,
在Rt△FMN中,∠MFN=30°,
∴FN=MN=3,
∴AN=MB=8﹣3=5,
设OA=x,则OB=x+3,
∴F(x,8),M(x+3,5),
∴8x=(x+3)×5,
解得,x=5,
∴F(5,8),
∴k=5×8=40.
故答案为:40.
【点睛】
考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.
4.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是_____.
【答案】
【解析】
【分析】
作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.
【详解】
解:连接OD,过C作CE∥AB,交x轴于E,
∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,
∴S△COE=S△BOD=,S△ACD=S△OCD=2,
∵CE∥AB,
∴△OCE∽△OAB,
∴,
∴4S△OCE=S△OAB,
∴4×k=2+2+k,
∴k=,
故答案为:.
【点睛】
本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了相似三角形的判定与性质.
5.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为__,的值为__.
【答案】24 ﹣
【解析】
【分析】
如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE-S四边形ABCD=56-32=24,推出S△AOE=S△DEO=12,可得a-b=12,推出a-b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.
【详解】
如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.
由题意A,D关于原点对称,
∴A,D的纵坐标的绝对值相等,
∵AE∥CD,
∴E,C的纵坐标的绝对值相等,
∵E,C在反比例函数y=的图象上,
∴E,C关于原点对称,
∴E,O,C共线,
∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,
∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,
∴S△AOE=S△DEO=12,
∴a﹣b=12,
∴a﹣b=24,
∵S△AOC=S△AOB=12,
∴BC∥AD,
∴=,
∵S△ACB=32﹣24=8,
∴S△ADC:S△ABC=24:8=1:3,
∴BC:AD=1:3,
∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,
∴AK:BK=3:1,
∴==,
∴=﹣.
故答案为24,﹣.
【点睛】
本题考查了反比例函数与一次函数的交点问题,平行四边形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考填空题中的压轴题.
6.点P,Q,R在反比例函数(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为_______.
【答案】
【解析】
【分析】
利用反比例函数系数的几何意义,及OE=ED=DC求解,然后利用列方程求解即可得到答案.
【详解】
解:由题意知:矩形的面积
同理:矩形,矩形的面积都为,
故答案为:
【点睛】
本题考查的是矩形的性质,反比例函数的系数的几何意义,掌握以上性质是解题的关键.
7.已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是_____.
【答案】y=﹣.
【解析】
【分析】
把点(2,﹣2)代入反比例函数y=(k≠0)中求出k的值,从而得到反比例函数解析式.
【详解】
解:∵反比例函数y=(k≠0)的图象上一点的坐标为(2,﹣2),
∴k=﹣2×2=﹣4,
∴反比例函数解析式为y=﹣,
故答案为:y=﹣.
【点睛】
此题主要考查了待定系数法求反比例函数解析式,关键是掌握反比例函数图象上的点的坐标特点:横纵坐标的积=k.
二、解答题
8.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
【答案】反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.
【解析】
【分析】
(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;
(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;
(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C在点D的左侧、点C在点D的右侧两种情况解答.
【详解】
点在反比例函数的图象上,
,
反比例函数的解析式为,
点在反比例函数的图象上,
,
则点B的坐标为,
由题意得,,
解得,,
则一次函数解析式为:;
由函数图象可知,当或时,;
,,
,
由题意得,,
在中,,即,
解得,,
当点C在点D的左侧时,点C的坐标为,
当点C在点D的右侧时,点C的坐标为,
当点C的坐标为或时,.
【点睛】
本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.
9.如图,在平面直角坐标系xOy中,A(﹣1,2).
(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是 .
(2)点C与点A关于原点O对称,则点C的坐标是 .
(3)反比例函数的图象经过点B,则它的解析式是 .
(4)一次函数的图象经过A,C两点,则它的解析式是 .
【答案】(1)(2,3);(2)(1,-2);(3);(4)
【解析】
【分析】
(1)根据“上加下减,左减右加”法则判断即可确定出B的坐标;
(2)根据关于原点对称的点的坐标特征判断即可;
(3)设反比例函数解析式为y=,把B坐标代入确定出k,即可求出解析式;
(4)设一次函数解析式为y=mx+n,把A与C坐标代入求出m与n的值,即可求出解析式.
【详解】
解:(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是(2,3);
(2)点C与点A关于原点O对称,则点C的坐标是(1,﹣2);
(3)设反比例函数解析式为y=,
把B(2,3)代入得:k=6,
∴反比例函数解析式为y=;
(4)设一次函数解析式为y=mx+n,
把A(﹣1,2)与C(1,﹣2)代入得: ,
解得:,
则一次函数解析式为.
故答案为:(1)(2,3);(2)(1,﹣2);(3)y=;(4)y=﹣2x.
【点睛】
本题主要考查了一次函数图象上点的坐标特征;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化﹣平移以及关于原点对称的点的坐标.
10.如图,在平面直角坐标系中,一次函数的图象与x轴,y轴的交点分别为点A,点B,与反比例函数的图象交于C,D两点,轴于点E,连接,.
(1)求反比例函数的解析式;
(2)求的面积.
【答案】(1);(2)
【解析】
【分析】
(1)根据一次函数表达式推出△CAE为等腰直角三角形,得到AE=CE,再由AC的长求出AE和CE,再求出点A坐标,得到OE的长,从而得到点C坐标,即可求出k值;
(2)联立一次函数和反比例函数表达式,求出交点D的坐标,再用乘以CE乘以C、D两点横坐标之差求出△CDE的面积.
【详解】
解:(1)∵一次函数y=x+1与x轴和y轴分别交于点A和点B,
∴∠CAE=45°,即△CAE为等腰直角三角形,
∴AE=CE,
∵AC=,即,
解得:AE=CE=3,
在y=x+1中,令y=0,则x=-1,
∴A(-1,0),
∴OE=2,CE=3,
∴C(2,3),
∴k=2×3=6,
∴反比例函数表达式为: ;
(2)联立:,
解得:x=2或-3,
当x=-3时,y=-2,
∴点D的坐标为(-3,-2),
∴S△CDE==.
【点睛】
本题考查了反比例函数和一次函数综合,求反比例函数表达式,解一元二次方程,三角形面积,难度不大,解题时要注意结合坐标系中图形作答.
11.阅读理解:
材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.
材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.
问题解决:
(1)请你写出三个能构成“和谐三数组”的实数 ;
(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1 ,x2,x3可以构成“和谐三数组”;
(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.
【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.
【解析】
【分析】
(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;
(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;
(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.
【详解】
解:(1)∵,
∴,2,3是“和谐三数组”;
故答案为:,2,3(答案不唯一);
(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,
∴,,
∴,
∵是关于x的方程bx+c=0(b,c均不为0)的解,
∴,∴,
∴=,
∴x1 ,x2,x3可以构成“和谐三数组”;
(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,
∴,,,
∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,
∴或或,
即或或,
解得:m=﹣4或﹣2或2.
【点睛】
本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.
12.如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.
(1)n= ,k= ;
(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;
(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.
【答案】(1)﹣4,﹣;(2)C(0,2);(3)m<﹣2或m>2
【解析】
【分析】
(1)把A点坐标代入反比例函数解析式求得n,再把求得的A点坐标代入正比例函数解析式求得k;
(2)可设点C(0,b),只要求出b的值就行,求值一般的方法是相似和勾股定理,此题用相似,只需证明△ACD∽△CBE即可;
(3)在x轴上找到点P1,P2,使AP1⊥P1B,AP2⊥BP2,则点P在P1的左边,在P2的右边就符合要求了.
【详解】
解:(1)把A(n,2)代入反比例函数y=﹣中,得n=﹣4,
∴ A(﹣4,2),
把A(﹣4,2)代入正比例函数y=kx(k≠0)中,得k=﹣,
故答案为:﹣4;﹣;
(2)如图1,过A作AD⊥y轴于D,过B作BE⊥y轴于E,
∵ A(﹣4,2),
∴ 根据双曲线与正比例函数图象的对称性得B(4,﹣2),
设C(0,b),则CD=b﹣2,AD=4,BE=4,CE=b+2,
∵ ∠ACO+∠OCB=90°,∠OCB+∠CBE=90°,
∴ ∠ACO=∠CBE,
∵ ∠ADC=∠CEB=90°,
∴ △ACD∽△CBE,
∴ ,即,
解得,b=2,或b=﹣2(舍),
∴ C(0,2);
(3)如图2,过A作AM⊥x轴于M,过B作BN⊥x轴于N,在x轴上原点的两旁取两点P1,P2,使得OP1=OP2=OA=OB,
∴ ,
∴ P1(﹣2,0),P2(2,0),
∵ OP1=OP2=OA=OB,
∴ 四边形AP1BP2为矩形,
∴ AP1⊥P1B,AP2⊥BP2,
∵ 点P(m,0)在x轴上,∠APB为锐角,
∴ P点必在P1的左边或P2的右边,
∴ m<﹣2或m>2.
【点睛】
本题是正比例函数与反比例函数的综合题,涉及用待定系数法求解析式、利用相似三角形的判定与性质求点的坐标、借助做辅助线构造矩形求满足条件的参数范围,解答关键是认真审题,分析图象,找到相关信息的关联点,进而推理、计算.
13.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【答案】(1)y=,y=2x﹣5;(2)(2.5,0)
【解析】
【分析】
(1)利用待定系数法即可解答;
(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.
【详解】
解:(1)把点A(4,3)代入函数y=得:a=3×4=12,
∴y=.
OA==5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:
解得:;
∴y=2x﹣5.
(2)∵点M在一次函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5),
∵MB=MC,
∴
解得:x=2.5,
∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),
∴BC=10,
∴BC的中垂线为:直线y=0,
当y=0时,2x﹣5=0,即x=2.5,
∴点M的坐标为(2.5,0).
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
14.如图,已知直线
(1)当反比例函数的图象与直线在第一象限内至少有一个交点时,求k的取值范围
(2)若反比例函数的图象与直线在第一象限内相交于点、,当时,求k的值并根据图象写出此时关的不等式的解集
【答案】(1);(2);或;
【解析】
【分析】
(1)根据方程至少有一个交点,得判别式大于或等于0,可得答案;
(2)根据韦达定理,可得方程两根的关系,结合,即可求出k的值;进而求出点A、B的横坐标,然后根据反比例函数图象在上方的区域,可得不等式的解集.
【详解】
解:(1)∵与的图像在第一象限内至少有一个交点,
∴令,则,
∴,
∴;
∴k的取值范围为:;
(2)由(1)得,
∴,,
∴
∵,
∴,
∴;
∴,
解得:,,
∴不等式的解集是:或;
【点睛】
本题考查了反比例函数与一次函数的交点问题,利用了韦达定理,一次函数与不等式的关系.解题的关键是熟练掌握反比例函数与一次函数的性质进行解题.
15.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.
(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?
(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.
【答案】(1)校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一班学生能安全进入教室,计算说明过程见解析.
【解析】
【分析】
(1)设校医完成一间办公室和一间教室的药物喷洒各要和,再根据题干信息建立二元一次方程组,然后解方程组即可得;
(2)先求出完成11间教室的药物喷洒所需时间,再根据一次函数的解析式求出点A的坐标,然后利用待定系数法求出反比例函数的解析式,最后根据反比例函数的解析式求出时,y的值,与1进行比较即可得.
【详解】
(1)设校医完成一间办公室和一间教室的药物喷洒各要和
则
解得
答:校医完成一间办公室和一间教室的药物喷洒各要和;
(2)一间教室的药物喷洒时间为,则11个房间需要
当时,
则点A的坐标为
设反比例函数表达式为
将点代入得:,解得
则反比例函数表达式为
当时,
故一班学生能安全进入教室.
【点睛】
本题考查了二元一次方程组的应用、反比例函数与一次函数的综合等知识点,较难的是题(2),依据题意,正确求出反比例函数的解析式是解题关键.
16.已知一次函数与反比例函数的图象交于、两点.
(1)求一次函数和反比例函数的表达式;
(2)求的面积;
(3)点在轴上,当为等腰三角形时,直接写出点的坐标.
【答案】(1),;(2)8;(3),,,
【解析】
【分析】
(1)首先把,代入中,就可以确定m和 n的值,再把,代入,从而求得一次函数与反比例函数的表达式;
(2)利用两个函数的解析式组成方程组,解方程组就可以得到A,B两点的坐标,求出直线AB与x轴的交点坐标,然后利用面积的分割法求出△AOB的面积;
(3)根据AO=OP,AP=AO,AP=OP三种情况,结合两点间的距离公式得出点的坐标.
【详解】
解:(1)将代入中,得,
反比例函数的表达式为
在的图象上,,即
将、坐标代入得
,解得:.一次函数表达式为:.
(2)设直线与轴交于点,则点为,
.
(3),
设P(x,0).
当AO=OP=时,点在轴上,
点为或
当AO=AP=时,
,x=-6或0(舍去)
点为,
当OP=AP时,
,;
点为
综上所述,符合条件的点P的坐标是,,,.
【点睛】
考查了一次函数综合题,需要掌握一次函数图象上点的坐标特征,两点间的距离公式,等腰三角形的性质,在没有指明等腰三角形的底(或腰)的情况下,一定要分类讨论,以防漏解.
17.如图,反比例函数与一次函数的图象在第二象限的交点为,在第四象限的交点为,直线(为坐标原点)与函数的图象交于另一点.过点作轴的平行线,过点作轴的平行线,两直线相交于点,的面积为6.
(1)求反比例函数的表达式;
(2)求点,的坐标和的面积.
【答案】(1);(2)的面积为
【解析】
【分析】
(1)联立与求解的坐标,利用得到关于原点成中心对称,求解的坐标,结合已知得到的坐标,利用面积列方程求解即可得到答案;
(2)由(1)得到的值,得到的坐标,的解析式,记与轴的交点为 求解的坐标,利用可得答案.
【详解】
解:(1)由题意得:
当
当
经检验:符合题意.
<
为与的交点,
轴,轴,
的面积为6.
反比例函数的解析式为:
(2)
直线为,
记与轴的交点为,
令 则
【点睛】
本题考查的是一次函数与反比例函数的综合题,考查了一次函数与反比例函数的交点问题,反比例函数与一次函数的性质,考查了方程组与一元二次方程的解法,图形与坐标,图形面积问题,掌握以上知识是解题的关键.
18.如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.
(1)求y1,y2对应的函数表达式;
(2)求△AOB的面积;
(3)直接写出当x<0时,不等式ax+b>的解集.
【答案】(1)y1=﹣x+2,y2=﹣;(2)9;(3)x<﹣3
【解析】
【分析】
【详解】
解:(1)设直线y1=ax+b与y轴交于点D,
在Rt△OCD中,OC=3,tan∠ACO=.
∴OD=2,即点D(0,2),
把点D(0,2),C(0,3)代入直线y1=ax+b得,
b=2,3a+b=0,解得,a=﹣,
∴直线的关系式为y1=﹣x+2;
把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2,
∴A(﹣3,4),B(6,﹣2),
∴k=﹣3×4=﹣12,
∴反比例函数的关系式为y2=﹣,因此y1=﹣x+2,y2=﹣;
(2)由S△AOB=S△AOC+S△BOC=×3×4+×3×2=9.
(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.
(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;
(2)由S△AOB=S△AOC+S△BOC,进行计算即可;
(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.
【点评】本题考查一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,线段与坐标的相互转化是解决问题的关键.
19.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
【答案】(1)y=﹣2x+6.;(2) 另一个交点坐标为(5,﹣4).(3) ﹣2≤x<0或x≥5.
【解析】
【分析】
(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.
(2)两个函数的解析式作为方程组,解方程组即可解决问题.
(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.
【详解】
(1)∵OB=2OA=3OD=6,
∴OB=6,OA=3,OD=2,
∵CD⊥OA,
∴DC∥OB,
∴,
∴,
∴CD=10,
∴点C(﹣2,10),B(0,6),A(3,0),
∴
解得:,
∴一次函数的表达式为y=﹣2x+6.
∵反比例函数的表达式经过点C(﹣2,10),
∴n=﹣20,
∴反比例函数的表达式为;
(2)由,
解得或,
故另一个交点坐标为(5,﹣4);
(3)由图象可知的解集为:﹣2≤x<0或x≥5.
20.九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数的图像与性质,其探究过程如下:
(1)绘制函数图像,如图1
①列表;下表是x与y的几组对应值,其中;
②描点:根据表中各组对应值(x,y)在平面直角坐标系中描出了各点;
③连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整;
(2)通过观察图1,写出该函数的两条性质:①_______________;②_______________;
(3)①观察发现:如图2,若直线y=2交函数的图像于A,B两点,连接OA,过点B作BC//OA交x轴于点C,则;
②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则;
③类比猜想:若直线y=a(a>0)交函数的图像于A,B两点,连接OA,过点B作BC//OA交x轴于C,则;
【答案】(1)①1,②见解析,③见解析;(2)①函数的图象关于轴对称,②当时,随的增大而增大,当时,随的增大而减小;(3)①4,②4,③2k
【解析】
【分析】
(1)根据表格中的数据的变化规律得出当时,,而当时,,求出的值;补全图象;
(2)根据(1)中的图象,得出两条图象的性质;
(3)由图象的对称性,和四边形的面积与的关系,得出答案.
【详解】
解:(1)当时,,而当时,,
,
故答案为:1;补全图象如图所示:
(2)根据(1)中的图象可得:①函数的图象关于轴对称,②当时,随的增大而增大,当时,随的增大而减小;
(3)如图,
①由,两点关于轴对称,由题意可得四边形是平行四边形,且,
②同①可知:,
③,
故答案为:4,4,.
【点睛】
本题考查反比例的图象和性质,列表、描点、连线是作函数图象的基本方法,利用图象得出性质和结论是解决问题的根本目的.
21.南宁至玉林高速铁路已于去年开工建设,玉林辆隧道是全线控制性隧道,首期打通共有土石方总量600千立方米,总需要时间y天,且完成首期工程限定时间不超过600天.设每天打通土石方x千立方米.
(1)求y与x之间的函数关系式及自变量x的取值范围;
(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?
【答案】(1)(0
【分析】
(1)根据“工作时间=总工作量÷每天工作量”,即可得出y关于x的函数关系式;
(2)根据工期比原计划提前了100天列方程求解即可.
【详解】
解:(1)∵共有土石方总量600千立方米,
∴(0
,
解得x1=1,x2=(负值舍去),
经检验x=1是原分式方程的解
1+0.2=1.2千立方米,
600÷1.2=500天.
答:实际挖掘了500天才能完成首期工程.
【点睛】
本题考查了反比例函数的应用,以及分式方程的应用,解题的关键是:(1)根据数量关系列出函数关系式;(2)根据工期比原计划提前了100天列出方程.
22.已知反比例函数的图象分别位于第二、第四象限,化简:.
【答案】5
【解析】
【分析】
由反比例函数图象的性质可得k<0,化简分式时注意去绝对值.
【详解】
由题意得k<0.
【点睛】
本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.
23.为了探索函数的图象与性质,我们参照学习函数的过程与方法.
列表:
描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示:
(1)如图,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
(2)已知点在函数图象上,结合表格和函数图象,回答下列问题:
若,则 ;
若,则 ;
若,则 (填“>”,“=”,“<”).
(3)某农户要建造一个图所示的长方体形无盖水池,其底面积为平方米,深为米.已知底面造价为千元/平方米,侧面造价为千元/平方米,设水池底面一边的长为米,水池总造价为千元.
①请写出与的函数关系式;
②若该农户预算不超过千元,则水池底面一边的长应控制在什么范围内?
【答案】(1)见解析;(2)>;<;=;(3)①;②.
【解析】
【分析】
(1)用一条光滑曲线将点顺次连接起来,作出函数图象即可;
(2)观察函数图象可以看出有最低点,即函数有最小值,结合表格提供的信息即可解决问题;
(3)①根据底面面积可求出底面另一条边长,进而可求出水池的侧面积,分别表示出底面和侧面的造价,从而可表示出与的函数关系式;
②根据函数关系式结合表格可得出x的控制范围.
【详解】
(1)如图1所示;
(2)根据图象和表格可知,当时,>;当,则<;当,则=;
(3)①∵底面面积为1平方米,一边长为x米,
∴与之相邻的另一边长为米,
∴水池侧面面积的和为:
∵底面造价为千元/平方米,侧面造价为千元/平方米,
∴
即:与的函数关系式为:;
②∵该农户预算不超过千元,即y≤3.5
∴
∴,
根据图象或表格可知,当2≤y≤2.5时,,
因此,该农户预算不超过千元,则水池底面一边的长应控制在.
【点睛】
本题考查反比例函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24.如图,平面直角坐标系中,的边在轴上,对角线,交于点,函数的图象经过点和点.
(1)求的值和点的坐标;
(2)求的周长.
【答案】(1)k=12,M(6,2);(2)28
【解析】
【分析】
(1)将点A(3,4)代入中求出k的值,作AD⊥x轴于点D,ME⊥x轴于点E,证明△MEC∽△ADC,得到,求出ME=2,代入即可求出点M的坐标;
(2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.
【详解】
(1)将点A(3,4)代入中,得k=,
∵四边形OABC是平行四边形,
∴MA=MC,
作AD⊥x轴于点D,ME⊥x轴于点E,
∴ME∥AD,
∴△MEC∽△ADC,
∴,
∴ME=2,
将y=2代入中,得x=6,
∴点M的坐标为(6,2);
(2)∵A(3,4),
∴OD=3,AD=4,
∴,
∵A(3,4),M(6,2),
∴DE=6-3=3,
∴CD=2DE=6,
∴OC=3+6=9,
∴的周长=2(OA+OC)=28.
【点睛】
此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.
25.如图,反比例函数的图象与正比例函数的图象相交于、B两点,点C在第四象限,BC∥x轴.
(1)求k的值;
(2)以、为边作菱形,求D点坐标.
【答案】(1)k=2;(2)D点坐标为(1+,2).
【解析】
【分析】
(1)根据题意,点在正比例函数上,故将点代入正比例函数中,可求出a值,点A又在反比例函数图像上,故k值可求;
(2)根据(1)中已知A点坐标,则B点坐标可求,根据两点间距离公式可以求出AB的长,最后利用已知条件四边形ABCD为菱形,BC∥x,即可求出D点坐标.
【详解】
(1)根据题意,点在正比例函数上,故将点代入正比例函数中,得a=2,故点A的坐标为(1,2),点A又在反比例函数图像上,设反比例函数解析式为,将A(1,2)代入反比例函数解析中,得k=2.
故k=2.
(2)如图,A、B为反比例函数与正比例函数的交点,故可得,解得,,如图,已知点A坐标为(1,2),故点B坐标为(-1,-2),根据两点间距离公式可得AB=,根据已知条件中四边形ABCD为菱形,故AB=AD=,AD∥BC∥x轴,则点D坐标为(1+,2).
故点D坐标为(1+,2).
【点睛】
(1)本题主要考查正比例函数和反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法以及已知解析式求点坐标是解答本题的关键.
(2)本题主要考查求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式,掌握求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式是解答本题的关键.
26.如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB//OC,线段OA,AB的长分别是方程x2-9x+20=0的两个根(OA
(1)求点B,C的坐标;
(2)P为OA上一点,Q为OC上一点,OQ=5,将∆POQ翻折,使点O落在AB上的点处,双曲线的一个分支过点.求k的值;
(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以,Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】(1)点B的坐标为(5,4),点C的坐标为(8,0);(2)k=8 ;(3)存在.,,,.
【解析】
【分析】
(1)解一元二次方程得到OA=4, AB=5,过点B作BD⊥OC于点D,求出OD、OC的长即可求解;
(2)根据翻折的性质即可求解;
(3)分类讨论,以,Q为边时和以,Q为对角线时,在前两问的基础上先确定点M的坐标,进而确定点N的坐标.
【详解】
(1)解方程:x2-9x+20=0,得x1=4, x2=5,
∵OA
过点B作BD⊥OC于点D,
∵tan∠OCB=,BD=OA=4,OD=AB=5,
∴CD=3,
∴OC=8,
∴点B的坐标为(5,4),点C的坐标为(8,0);
(2)∵AB//OC, OQ=AB=5,∠AOQ=90º,
∴四边形AOQB为矩形,
∴BQ=OA=4,由翻折,得OQ==5,
∴=3,
∴A=2,
∴(2, 4),
∴;
(3)存在.
①以,Q为边时,点M的坐标为或或,当点M的坐标为时,点N的坐标为;当点M的坐标为时,点N的坐标为;当点M的坐标为时,点N的坐标为;
②以,Q为对角线时,点M的坐标为,此时点N的坐标为,
综上所述,点N的坐标为:,,,.
【点睛】
本题考查的是矩形的判定、解一元二次方程、求反比例函数的解析式等内容,熟练掌握矩形的判定与性质是解题的关键.
27.如图,一次函数的图像与反比例函数的图像交于两点,过点A作于点C.
(1)求一次函数和反比例函数的表达式;
(2)求四边形ABOC的面积.
【答案】(1);(2)
【解析】
【分析】
(1)将点B(-1,-3)代入,可得反比例函数解析式,即可求出A点的坐标,将A、B代入解析式即可求解;
(2)过点B作BE垂直于y轴于点E,根据关系式可求解;
【详解】
解:(1)将点B(-1,-3)代入,
解得
所以反比例函数的表达式为;
将点A(-3,n)代入有,n=-1
将A,B代入得
解得
所以一次函数表达式为;
(2)过点B作BE垂直于y轴于点E,
答:四边形的面积为.
【点睛】
本题主要考查了反比例函数与一次函数综合,准确利用函数性质进行求解是解题的关键.
28.如图,直线与反比例函数的图象交于A,B两点,已知点A的坐标为,的面积为8.
(1)填空:反比例函数的关系式为_________________;
(2)求直线的函数关系式;
(3)动点P在y轴上运动,当线段与之差最大时,求点P的坐标.
【答案】(1);(2);(3)
【解析】
【分析】
(1)把点代入解析式,即可得到结果;
(2)过点A作轴于点C,过点B作轴于点D,交于点E,则四边形为矩形,设点B的坐标为,表示出△ABE的面积,根据△AOB得面积可得,得到点B的坐标,代入即可的到解析式;
(3)根据“三角形两边之差小于第三边”可知,当点P为直线与y轴的交点时,有最大值为,代入即可求值.
【详解】
解:(1)把点代入可得,
∴反比例函数的解析式为;
(2)如图,过点A作轴于点C,过点B作轴于点D,交于点E,则四边形为矩形.
设点B的坐标为,∴.
∵点A的坐标为,
∴.
∴.
∵A,B两点均在双曲线上,
∴.
∴
.
∵的面积为8,
∴,整理得.
∴.解得(舍去).
∴.∴点B的坐标为.
设直线的函数关系式为,
则.解得.
∴直线的函数关系式为.
(3)如上图,根据“三角形两边之差小于第三边”可知,
当点P为直线与y轴的交点时,有最大值为,
把代入,得.
∴点P的坐标为.
【点睛】
本题主要考查了反比例函数与一次函数的综合,准确分析题意是解题的关键.
29.如图在平面直角坐标系中,一次函数的图像经过点、交反比例函数的图像于点,点在反比例函数的图像上,横坐标为,轴交直线于点,是轴上任意一点,连接、.
(1)求一次函数和反比例函数的表达式;
(2)求面积的最大值.
【答案】(1);(2)
【解析】
【分析】
(1)利用点、求解一次函数的解析式,再求的坐标,再求反比例函数解析式;
(2)设 则再表示的长度,列出三角形面积与的函数关系式,利用函数的性质可得答案.
【详解】
解:(1)设直线AB为
把点、代入解析式得:
解得:
直线为
把代入得:
把代入:
,
(2)设 轴,
则 由<<,
即当时,
【点睛】
本题考查的是利用待定系数法求解一次函数与反比例函数的解析式,以及利用二次函数的性质求解面积的最值,掌握以上知识是解题的关键.
30.如图,在平面直角坐标系中,直线与轴、轴分别相交于、两点,与双曲线的一个交点为,且.
(1)求点的坐标;
(2)当时,求和的值.
【答案】(1) (3,0);(2) ,
【解析】
【分析】
(1)令中即可求出点A的坐标;
(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用和OA=3进而求出CM的长,再由求出CN的长,进而求出点C坐标即可求解.
【详解】
解:(1)由题意得:令中,
即,解得,
∴点A的坐标为(3,0),
故答案为(3,0) .
(2) 过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:
显然,CMOA,∴∠BCM=∠BAO,且∠ABO=∠CBO,
∴△BCM∽△BAO,
∴,代入数据:
即:,∴=1,
又
即:,∴,
∴C点的坐标为(1,2),
故反比例函数的,
再将点C(1,2)代入一次函数中,
即,解得,
故答案为:,.
【点睛】
本题考查了反比例函数与一次函数的图像及性质,相似三角形的判定和性质等,熟练掌握其图像性质是解决此题的关键.
31.如图,正比例函数的图像与反比例函数的图像交于点.点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图像于点C,交正比例函数的图像于点D.
(1)求a的值及正比例函数的表达式;
(2)若,求的面积.
【答案】(1)a=2;y=2x;(2)
【解析】
【分析】
(1)已知反比例函数解析式,点A在反比例函数图象上,故a可求;求出点A的坐标后,点A同时在正比例函数图象上,将点A坐标代入正比例函数解析式中,故正比例函数的解析式可求.
(2)根据题意以及第一问的求解结果,我们可设B点坐标为(b,0),则D点坐标为(b,2b),根据BD=10,可求b值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.
【详解】
(1)已知反比例函数解析式为y=,点A(a,4)在反比例函数图象上,将点A坐标代入,解得a=2,故A点坐标为(2,4),又∵A点也在正比例函数图象上,设正比例函数解析为y=kx,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x.
故a=2;y=2x.
(2)根据第一问的求解结果,以及BD垂直x轴,我们可以设B点坐标为(b,0),则C点坐标为(b,)、D点坐标为(b,2b),根据BD=10,则2b=10,解得b=5,故点B的坐标为(5,0),D点坐标为(5,10),C点坐标为(5,),则在△ACD中,=.
故△ACD的面积为.
【点睛】
(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.
(2)本题根据第一问求解的结果以及BD垂直x轴,利用待定系数法,设B、C、D三点坐标,求出B、C、D三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.
32.如图所示,一次函数的图象与反比例函数的图象交于第二、四象限的点和点,过点作轴的垂线,垂足为点,的面积为4.
(1)分别求出和的值;
(2)结合图象直接写出中的取值范围;
(3)在轴上取点,使取得最大值时,求出点的坐标.
【答案】(1),;(2)或;(3).
【解析】
【分析】
(1)由△AOC的面积为4,可求出a的值,确定反比例函数的关系式,把点B坐标代入可求b的值.
(2)根据图象观察当自变量x取何值时,一次函数图象位于反比例函数图象的上方即可,注意由两部分.
(3)由对称点A关于y轴的对称点A′,直线A′B与y轴交点就是所求的点P,求出直线与y轴的交点坐标即可.
【详解】
(1)由题意得:
∴,
又∵反比例函数图象经过第二、四象限
∴,
当时,;当时,,解得
(2)由图象可以看出的解集为或
(3)如图,作点A关于y轴的对称点A′,直线A′B与y轴交于P,此时PA-PB最大(PB-PA=PB-PA′≤A′B,共线时差最大)
∵关于轴的对称点为,
又,则直线与轴的交点即为所求点.
设直线的解析式为
则解得
∴直线的解析式为
∴直线与轴的交点为.
即点的坐标为.
【点睛】
本题主要考查了反比例函数与一次函数综合,涉及了轴对称以及待定系数法求函数的关系式、线段的最值等知识,理解作点A关于y轴的对称点A′,直线A′B与y轴交于P,此时PA-PB最大.
33.如图,点是反比例函数()图象上一点,过点分别向坐标轴作垂线,垂足为,,反比例函数()的图象经过的中点,与,分别相交于点,.连接并延长交轴于点,点与点关于点对称,连接,.
(1)填空:_________;
(2)求的面积;
(3)求证:四边形为平行四边形.
【答案】(1)2 (2)3 (3)见解析
【解析】
【分析】
(1)根据题意设点B的坐标为(x,),得出点M的坐标为(,),代入反比例函数(),即可得出k;
(2)连接,根据反比例函数系数k的性质可得,,可得,根据,可得点到的距离等于点到距离,由此可得出答案;
(3)设,,可得,,根据,可得,同理,可得,,证明,可得,根据,得出,根据,关于对称,可得,,,可得,再根据,即可证明是平行四边形.
【详解】
解:(1)∵点B在上,
∴设点B的坐标为(x,),
∴OB中点M的坐标为(,),
∵点M在反比例函数(),
∴k=·=2,
故答案为:2;
(2)连接,则,
,
∵,
∴,
∵,
∴点到的距离等于点到距离,
∴;
(3)设,,
,,
又∵,
∴,
同理,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,关于对称,
∴,
∴,
∴,
又∵,
∴,
又∵,
∴是平行四边形.
【点睛】
本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.
34.已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,.
(1)求反比例函数的解析式;
(2)当时,求点C的坐标.
【答案】(1);(2)点C的坐标为
【解析】
【分析】
(1)过点B作轴于点M,由设BM=x,MO=2x,由勾股定理求出x的值,得到点B的坐标,代入即可求解;
(2)设点C的坐标为,则.设直线AB的解析式为:,将B点坐标代入AB的函数关系式,可得,令y=0得到,令,解得两个x的值,A点的横坐标为,由列出方程求解即可.
【详解】
解:(1)过点B作轴于点M,则
在中.
设,则.
又.
.
又
,
∴点B的坐标是
∴反比例的解析式为.
(2)设点C的坐标为,则.设直线AB的解析式为:.
又∵点在直线AB上将点B的坐标代入直线解析式中,
.
.
∴直线AB的解析式为:.
令,则.
.
令,解得.
经检验都是原方程的解.
又.
.
.
.
.
经检验,是原方程的解.
∴点C的坐标为.
【点睛】
本题考查反比例函数与一次函数综合、分式方程、一元二次方程和解直角三角形,解题的关键是熟练掌握反比例函数的图象和性质.
35.如图,已知一次函数与反比例函数的图象在第一、三象限分别交于,两点,连接,.
(1)求一次函数和反比例函数的解析式;
(2)的面积为______;
(3)直接写出时x的取值范围.
【答案】(1),;(2)8;(3)-2<x<0或x>6.
【解析】
【分析】
(1)把A代入反比例函数,根据待定系数法即可求得m,得到反比例函数的解析式,然后将代入,求得a,再根据待定系数法求得一次函数的解析式即可;
(2)求出一次函数图像与x轴交点坐标,再利用面积公式计算即可;
(3)根据图象得到一次函数图像在反比例函数图像上方时的x取值范围.
【详解】
解:(1)把代入反比例函数得:
m=6,
∴反比例函数的解析式为,
∵点在反比例函数图像上,
∴-3a=6,解得a=-2,
∴B(-2,-3),
∵一次函数y1=kx+b的图象经过A和B,
∴,解得:,
∴一次函数的解析式为;
(2)∵,,一次函数的解析式为,
令y=0,解得:x=4,即一次函数图像与x轴交点为(4,0),
∴S△AOB=,
故答案为:8;
(3)由图象可知:
时,即一次函数图像在反比例函数图像上方,
x的取值范围是:-2<x<0或x>6.
【点睛】
此题是考查一次函数与反比例函数的交点问题、待定系数法求一次函数解析式,待定系数法求反比例函数解析式,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.
36.如图,已知点、,点P为线段AB上的一个动点,反比例函数的图像经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
【答案】(1)①;②不完全同意小明的说法;理由见详解;当时,有最大值;当时,有最小值;(2);
【解析】
【分析】
(1)①直接利用待定系数法,即可求出函数的表达式;
②由①得直线AB为,则,利用二次函数的性质,即可求出答案;
(2)根据题意,求出直线AB的直线为,设点P为(x,),则得到,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴,即可求出n的取值范围.
【详解】
解:(1)当时,点B为(5,1),
①设直线AB为,则
,解得:,
∴;
②不完全同意小明的说法;理由如下:
由①得,
设点P为(x,),由点P在线段AB上则
,
∴;
∵,
∴当时,有最大值;
当时,有最小值;
∴点P从点A运动至点B的过程中,k值先增大后减小,当点P在点A位置时k值最小,在的位置时k值最大.
(2)∵、,
设直线AB为,则
,解得:,
∴,
设点P为(x,),由点P在线段AB上则
,
当,即n=2时,,则k随x的增大而增大,如何题意;
当n≠2时,则对称轴为:;
∵点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.
即k在中,k随x的增大而增大;
当时,有
∴,解得:,
∴不等式组的解集为:;
当时,有
∴,解得:,
∴综合上述,n的取值范围为:.
【点睛】
本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.
37.已知反比例函数的图象经过点
(1)求的值
(2)完成下面的解答
解不等式组
解:解不等式①,得 .
根据函数的图象,得不等式②得解集 .
把不等式①和②的解集在数轴上表示出来
从中可以找出两个不等式解集的公共部分,得不等式组的解集 .
【答案】(1)2;(2),,见解析,
【解析】
【分析】
(1)利用待定系数法求解即可;
(2)根据移项、合并同类项、系数化为1求出不等式①的解集;根据反比例函数的图像求出不等式②的解集,进而求出公共部分即可.
【详解】
解:(1)因为点在反比例函数的图像上,
所以点的坐标满足,
即,解得;
(2),
解不等式①,得;
∵y=1时,x=2,
∴根据函数的图象,得不等式②得解集.
把不等式①和②的解集在数轴上表示出来:
从中可以找出两个不等式解集的公共部分,得不等式组的解集为.
【点睛】
本题考查了待定系数法求反比例函数解析式,利用反比例函数图象解不等式,以及不等式组的解法,求出反比例函数解析式是解答本题的关键.
38.如图,已知直线与x轴交于点A,与y轴交于点B,线段的长是方程的一个根,.请解答下列问题:
(1)求点A,B的坐标;
(2)直线交x轴负半轴于点E,交y轴正半轴于点F,交直线于点C.若C是的中点,,反比例函数图象的一支经过点C,求k的值;
(3)在(2)的条件下,过点C作,垂足为D,点M在直线上,点N在直线上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
【答案】(1)A(9,0),B(0,);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).
【解析】
【分析】
(1)解一元二次方程,得到点A的坐标,再根据可得点B坐标;
(2)利用待定系数法求出直线AB的表达式,根据点C是EF的中点,得到点C横坐标,代入可得点C坐标,根据点C在反比例函数图像上求出k值;
(3)画出图形,可得点P共有5个位置,分别求解即可.
【详解】
解:(1)∵线段的长是方程的一个根,
解得:x=9或-2(舍),而点A在x轴正半轴,
∴A(9,0),
∵,
∴B(0,);
(2)∵,
∴E(-6,0),
设直线AB的表达式为y=kx+b,将A和B代入,
得:,解得:,
∴AB的表达式为:,
∵点C是EF的中点,
∴点C的横坐标为-3,代入AB中,y=6,
则C(-3,6),
∵反比例函数经过点C,
则k=-3×6=-18;
(3)存在点P,使以D,M,N,P为顶点的四边形是正方形,
如图,共有5种情况,
在四边形DM1P1N1中,
M1和点A重合,
∴M1(9,0),
此时P1(9,12);
在四边形DP3BN3中,点B和M重合,
可知M在直线y=x+3上,
联立:,
解得:,
∴M(1,4),
∴P3(1,0),
同理可得:P2(9,-12),P4(-7,4),P5(-15,0).
故存在点P使以D,M,N,P为顶点的四边形是正方形,
点P的坐标为P1(9,12),P2(9,-12),P3(1,0),P4(-7,4),P5(-15,0).
【点睛】
本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.
39.如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.
【答案】(1);(2);(3)(答案不唯一)
【解析】
【分析】
(1)将x=2代入一次函数,求出其中一个交点是,再代入反比例函数即可解答;
(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程即可解答;
(3)设一次函数为y=ax+b(a≠0),根据题意得到b=5,联立一次函数与反比例函数解析式,得到,若无公共点,则方程无解,利用根的判别式得到,求出a的取值范围,再在范围内任取一个a的值即可.
【详解】
解:(1)∵一次函数的图象与反比例函数的图象的一个交点的横坐标是2,
∴当时,,
∴其中一个交点是.
∴.
∴反比例函数的表达式是.
(2)∵一次函数的图象向下平移2个单位,
∴平移后的表达式是.
联立及,可得一元二次方程,
解得,.
∴平移后的图象与反比例函数图象的交点坐标为
(3)设一次函数为y=ax+b(a≠0),
∵经过点,则b=5,
∴y=ax+5,
联立y=ax+5以及可得:,
若一次函数图象与反比例函数图象无交点,
则,解得:,
∴(答案不唯一).
【点睛】
本题考查了一次函数与反比例函数图象交点问题以及函数图象平移问题,解题的关键是熟悉函数图象上点的特征,第(3)问需要先确定a的取值范围.
40.如图,中,,顶点,都在反比例函数的图象上,直线轴,垂足为,连结,,并延长交于点,当时,点恰为的中点,若,.
(1)求反比例函数的解析式;
(2)求的度数.
【答案】(1);(2)
【解析】
【分析】
(1)根据勾股定理求得AD=OD=2,A(2,2),代入函数关系式求解即可;
(2)先根据直角三角形斜边的中线等于斜边的一半可得CE=BE,∠AEC=2∠ECB,又由OA=AE可得∠AOE=∠AEO=2∠ECB,由平行线的性质可知∠ECB=∠EOD,所以∠EOD=∠AOD,代入求解即可.
【详解】
(1)∵AD⊥x轴,∠AOD=45°,OA=,
∴AD=OD=2,
∴A(2,2),
∵点A在反比例函数图象上,
∴k=2×2=4,
即反比例函数的解析式为.
(2)∵△ABC为直角三角形,点E为AB的中点,
∴AE=CE=EB,∠AEC=2∠ECB,
∵AB=2OA ,
∴AO=AE,
∴∠AOE=∠AEO=2∠ECB,
∵∠ACB=90°,AD⊥x轴,
∴BC//x轴,
∴∠ECB=∠EOD,
∴∠AOE=2∠EOD,
∵∠AOD=45°,
∴∠EOD=∠AOD=.
【点睛】
本题考查了反比例函数的解析式、含30度角的直角三角形的性质、平行线的性质和等腰三角形的性质等知识点,根据题意找出角之间的关系是解题的关键.
41.如图,反比例函数和一次函数的图象都经过点和点.
(1)_________,_________;
(2)求一次函数的解析式,并直接写出时x的取值范围;
(3)若点P是反比例函数的图象上一点,过点P作轴,垂足为M,则的面积为_________.
【答案】(1)4,2;(2)y=-2x+6,1<x<2;(3)2
【解析】
【分析】
(1)把A(1,4)代入求出m的值;再将y=2代入反比例函数式,即可求出n的值;
(2)由(1)可知A、B两点的坐标,将这两点的坐标代入求出k、b的值即可,再根据t图象判定出时x的取值范围;
(3)设P点横坐标为a,则纵坐标为,即可知道OM、PM,进而求出面积即可.
【详解】
解:(1)把x=1,y=4代入得,
4=,
解得m=4
∴
当y=2时,2=
解得,n=2
(2)把A(1,4),B(2,2)分别代入得
解得
∴y2=-2x+6
当y1<y2时,从图象看得出:1
∴OM=a,PM=,
∴S△POM=
【点睛】
本题考查了一次函数和反比例函数的综合,根据是正确掌握待定系数法求函数解析式得方法,能根据图形求不等式的解集以及如何求三角形的面积.
42.如图,在平面直角坐标系中,点为坐标原点,菱形的顶点的坐标为.
(1)求过点的反比例函数的解析式;
(2)连接,过点作交轴于点,求直线的解析式.
【答案】(1)反比例函数解析式为;(2)直线的解析式为.
【解析】
【分析】
(1)由A的坐标求出菱形的边长,利用菱形的性质确定出B的坐标,利用待定系数法求出反比例函数解析式即可;
(2)利用相似三角形的性质得出点D的坐标,利用待定系数法求出直线BD解析式即可.
【详解】
过点A作轴,过B作轴,垂足分别为E,F,如图,
,,
∵四边形OABC是菱形,
,轴,
,
,
,
设过B点的反比例函数解析式为
把B点坐标代入得,k=32,
所以,反比例函数解析式为;
(2),
,
,
,
,
又,
,
,
,
解得,,
设BD所在直线解析式为,
把,分别代入,得:
解得,
∴直线的解析式为.
【点睛】
此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.
43.如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点.
(1)求反比例函数的表达式;
(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.
【答案】(1);(2)b的值为1或9.
【解析】
【分析】
(1)先将点A的坐标代入一次函数的表达式可求出m的值,从而可得点A的坐标,再将点A的坐标代入反比例函数的表达式即可得;
(2)先根据一次函数的图象平移规律得出平移后的一次函数的解析式,再与反比例函数的解析式联立,化简可得一个关于x的一元二次方程,然后利用方程的根的判别式求解即可得.
【详解】
(1)由题意,将点代入一次函数得:
将点代入得:,解得
则反比例函数的表达式为;
(2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为
联立
整理得:
一次函数的图象与反比例函数的图象有且只有一个交点
关于x的一元二次方程只有一个实数根
此方程的根的判别式
解得
则b的值为1或9.
【点睛】
本题考查了一次函数与反比例函数的综合、一次函数图象的平移、一元二次方程的根的判别式等知识点,较难的是题(2),将直线与双曲线的交点问题转化为一元二次方程的根的问题是解题关键.
44.如图,一次函数的图象与反比例函数的图象相交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)直线交轴于点,点是轴上的点,若的面积是,求点的坐标.
【答案】(1)一次函数的表达式为,反比例函数的表达式为;(2)(3,0)或(-5,0)
【解析】
【分析】
(1)将点A坐标代入中求得m,即可得反比例函数的表达式,据此可得点B坐标,再根据A、B两点坐标可得一次函数表达式;
(2)设点P(x,0),由题意解得PC的长,进而可得点P坐标.
【详解】
(1)将点A(1,2)坐标代入中得:m=1×2=2,
∴反比例函数的表达式为,
将点B(n,-1)代入中得:
,∴n=﹣2,
∴B(-2,-1),
将点A(1,2)、B(-2,-1)代入中得:
解得:,
∴一次函数的表达式为;
(2)设点P(x,0),
∵直线交轴于点,
∴由0=x+1得:x=﹣1,即C(-1,0),
∴PC=∣x+1∣,
∵的面积是,
∴
∴解得:,
∴满足条件的点P坐标为(3,0)或(-5,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题,会用待定系数法求函数的解析式,会用坐标表示线段长是解答的关键.
45.如图所示,一次函数的图象与反比例函数的图象交于.
(1)求反比例函数和一次函数的解析式;
(2)在x轴上存在一点C,使为等腰三角形,求此时点C的坐标;
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
【答案】(1),;(2),,,;(3)-12
【解析】
【分析】
(1)因为反比例函数过A、B两点,所以可求其解析式和n的值,从而知B点坐标,进而求一次函数解析式;
(2)分三种情况:OA=OC,AO=AC,CA=CO,分别求解即可;
(3)根据图像得出一次函数图像在反比例函数图像上方时x的取值范围即可.
【详解】
解:(1)把A(3,4)代入,
∴m=12,
∴反比例函数是;
把B(n,-1)代入得n=−12.
把A(3,4)、B(-12,−1)分别代入y=kx+b中:
得,
解得,
∴一次函数的解析式为;
(2)∵A(3,4),△AOC为等腰三角形,OA=,
分三种情况:
①当OA=OC时,OC=5,
此时点C的坐标为,;
②当AO=AC时,∵A(3,4),点C和点O关于过A点且垂直于x轴的直线对称,
此时点C的坐标为;
③当CA=CO时,点C在线段OA的垂直平分线上,
过A作AD⊥x轴,垂足为D,
由题意可得:OD=3,AD=4,AO=5,设OC=x,则AC=x,
在△ACD中,
,
解得:x=,
此时点C的坐标为;
综上:点C的坐标为:,,,;
(3)由图得:
当一次函数图像在反比例函数图像上方时,
-12
即使一次函数的值大于反比例函数的值的x的取值范围是:-12
【点睛】
本题考查了反比例函数与一次函数的交点,待定系数法求函数解析式,等腰三角形的性质,利用了数形结合及分类讨论的思想.
46.如图所示,的顶点A在反比例函数的图像上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且.
(1)若点E为线段OC的中点,求k的值;
(2)若为等腰直角三角形,,其面积小于3.
①求证:;
②把称为,两点间的“ZJ距离”,记为,求的值.
【答案】(1);(2)①见解析;②8.
【解析】
【分析】
(1)由点E为线段OC的中点,可得E点坐标为,进而可知A点坐标为:,代入解析式即可求出k;
(2)①由为等腰直角三角形,可得,再根据同角的余角相等可证,由AAS即可证明;
②由“ZJ距离”的定义可知为MN两点的水平距离与垂直距离之和,故,即只需求出B点坐标即可,设点,由可得,进而代入直线AB解析式求出k值即可解答.
【详解】
解:(1)∵点E为线段OC的中点,OC=5,
∴,即:E点坐标为,
又∵AE⊥y轴,AE=1,
∴,
∴.
(2)①在为等腰直角三角形中,,,
∴,
又∵BF⊥y轴,
∴,
∴
在和中
,
∴,
②解:设点坐标为,
∵
∴,,
∴,
设直线AB解析式为:,将AB两点代入得:
则.
解得,.
当时,,,,符合;
∴
,
当时,,,,不符,舍去;
综上所述:.
【点睛】
此题属于代几综合题,涉及的知识有:反比例函数、一次函数的性质及求法、三角形全等的判定及性质、等腰直角三角形性质等,熟练掌握三角形全等的性质和判定和数形结合的思想是解本题的关键.
47.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系.当时,.
(1)写出I关于R的函数解析式;
(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;
…
…
…
…
(3)如果以此蓄电池为电源的用电器的限制电流不能超过.那么用电器可变电阻应控制在什么范围内?
【答案】(1);(2)见解析;(3)控制在3.6以上的范围内
【解析】
【分析】
(1)先由电流I是电阻R的反比例函数,可设,根据当时,可求出这个反比例函数的解析式;
(2)将R的值分别代入函数解析式,即可求出对应的I值,从而完成表格和函数图像;
(3)将I≤10代入函数解析式即可确定电阻的取值范围.
【详解】
解:(1)解:(1)电流I是电阻R的反比例函数,设,
∵当时,,代入,得:k=4×9=36,
∴;
(2)填表如下:
函数图像如下:
(3)∵I≤10,,
∴,
∴R≥3.6,
即用电器可变电阻应控制在3.6以上的范围内.
【点睛】
本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.
48.如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A,B两点.且点A的坐标为.
(1)求该一次函数的解析式;
(2)求的面积.
【答案】(1);(2)9
【解析】
【分析】
(1)由点A在反比例函数图像上,求出a的值得到点A坐标,代入一次函数解析式即可;
(2)联立两个函数的解析式,即可求得点B的坐标,然后由S△AOB=S△AOC+S△BOC求得答案.
【详解】
解:∵点A在反比例函数上,
∴,解得a=2,
∴A点坐标,
∵点A在一次函数上,
∴,解得b=3,
∴该一次函数的解析式为;
(2)设直线与x轴交于点C,
令,解得x=- 2,
∴一次函数与x轴的交点坐标C(- 2,0),
∵,
解得或,
∴B(- 4,-3),
∴S△AOB=S△AOC+S△BOC,
=
=
=
=9
【点睛】
此题考查了待定系数法求函数的解析式、点与函数的关系以及三角形的面积,难度适中,注意掌握方程思想与数形结合思想的应用.
49.如图,已知反比例函数的图象与直线相交于点,.
(1)求出直线的表达式;
(2)在轴上有一点使得的面积为18,求出点的坐标.
【答案】(1);(2)当点在原点右侧时,,当点在原点左侧时,.
【解析】
【分析】
(1)通过点A的坐标确定反比例函数的解析式,再求得B的坐标,利用待定系数法将A,B的坐标代入,即可得到一次函数的解析式;
(2)直线与轴的交点为,过点,作轴的垂线,,垂足分别为,,得到,即,分情况讨论即可解决.
【详解】
解:(1)∵在的图象上,
∴,,
又点在的图象上,,即.
将点,的坐标代入,得,
解得.
∴直线的表达式为.
(2)设直线与轴的交点为,
当时,解得.即.
分别过点,作轴的垂线,,垂足分别为,.
.
又,即,∴.
当点在原点右侧时,,
当点在原点左侧时,.
【点睛】
本题考查反比例函数与一次函数的性质,解题的关键是掌握数形结合的思想.
50.在平面直角坐标系中,反比例函数()的图象经过点,过点的直线与轴、轴分别交于,两点.
(1)求反比例函数的表达式;
(2)若的面积为的面积的2倍,求此直线的函数表达式.
【答案】(1);(2)或
【解析】
【分析】
(1)根据题意将点A坐标代入原反比例函数解析式,由此进一步求解即可;
(2)根据题意,将直线解析式分以及两种情况结合的面积为的面积的2倍进一步分析求解即可.
【详解】
(1)∵反比例函数()的图象经过点A(3,4),
∴,
解得:,
∴原反比例函数解析式为:;
(2)①当直线的时,函数图像如图所示,
此时,不符合题意,舍去;
②当直线的时,函数图像如图所示,
设OC的长度为m,OB的长度为n,
∵的面积为的面积的2倍
∴,
∴,
∴OC的长为2,
∴当C点在y轴正半轴时,点C坐标为(0,2),
∴
∵点A坐标为(3,4),
∴,
∴,
∴直线解析式为:,
当C点在y轴负半轴时,点C坐标为(0,−2),
∴
∵点A坐标为(3,4),
∴,
∴,
∴直线解析式为:,
综上所述,直线解析式为:或.
【点睛】
本题主要考查了一次函数与反比例函数的图象及性质的综合运用,熟练掌握相关方法是解题关键.
51.如图,反比例函数的函数与y=2x的图象相交于点C,过直线上一点A(a,8)作AAB⊥y轴交于点B,交反比函数图象于点D,且AB=4BD.
(1)求反比例函数的解析式;
(2)求四边形OCDB的面积.
【答案】(1);(2)10
【解析】
【分析】
(1)求出点D的坐标即可解决问题;
(2)构建方程组求出点C的坐标,利用分割法求面积即可.
【详解】
解:(1)由点在上,则,
∴,
∵轴,与反比例函数图象交于点,且
∴,即,
∴,反比例函数解析式为;
(2)∵是直线与反比例函数图象的交点
∴,
∵
∴,则
∴,,
∴.
【点睛】
本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
52.如图,一次函数的图象与反比例函数的图象相交于和B两点.
(1)求反比例函数的解析式;
(2)求点B的坐标.
【答案】(1);(2).
【解析】
【分析】
(1)将代入一次函数中,求出m,再将点A代入反比例函数即可;
(2)联立一次函数与反比例函数解析式,解方程组即可解答.
【详解】
解:(1)将代入一次函数中得:
,
∴,代入反比例函数中得:,
解得:k=4,
∴反比例函数解析式为;
(2)联立一次函数与反比例函数解析式得:
解得:或,
∴.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键.
53.如图,在矩形中,,点D是边的中点,反比例函数的图象经过点D,交边于点E,直线的解析式为.
(1)求反比例函数的解析式和直线的解析式;
(2)在y轴上找一点P,使的周长最小,求出此时点P的坐标;
(3)在(2)的条件下,的周长最小值是______.
【答案】(1),;(2)点P坐标为;(3).
【解析】
【分析】
(1)首先求出D点坐标,然后将D点坐标代入反比例解析式,求出k即可得到反比例函数的解析式.将x=2代入反比例函数解析式求出对应y的值,即得到E点的坐标,然后将点D,E两点的坐标代入一次函数的解析式中,即可求出DE的解析式.
(2)作点D关于y轴的对称点,连接,交y轴于点P,连接.此时的周长最小.然后求出直线的解析式,求直线与y轴的交点坐标,即可得出P点的坐标;
(3)的周长的最小值为DE+,分别利用勾股定理两条线段的长,即可求.
【详解】
解:(1)∵D为的中点,,
∴.
∵四边形是矩形,,
∴D点坐标为.
∵在的图象上,
∴.∴反比例函数解析式为.
当时,.
∴E点坐标为.
∵直线过点和点
∴
解得
∴直线的解析式为.
∴反比例函数解析式为,
直线的解析式为.
(2)作点D关于y轴的对称点,连接,交y轴于点P,连接.
此时的周长最小.∵点D的坐标为,
∴点的坐标为.
设直线的解析式为.
∵直线经过
∴
解得
∴直线的解析式为.
令,得.
∴点P坐标为.
(3)由(1)(2)知D(1,4),E(2,2),(-1,4).又B(2,4),
∴BD=1,BE=2,B=3.
在Rt△BDE中,由勾股定理,得DE==.
在Rt△BE中,由勾股定理,得E==.
的周长的最小值为+DE =.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,矩形的性质,待定系数法求反比例函数和一次函数的解析式,轴对称的最短路径问题等,难度适中,正确的求出解析式和找到周长最小时的点P是解题的关键.
54.如图,已知一次函数的图象与反比例函数的图象交于点,点.
(1)求反比例函数的表达式;
(2)若一次函数图象与轴交于点C,点D为点C关于原点O的对称点,求的面积.
【答案】(1);(2)18
【解析】
【分析】
(1)根据点A、B都在反比例函数图象上,得到关于a的方程,求出a,即可求出反比例函数解析式;
(2)根据点A、B都在一次函数的图象上,运用待定系数法求出直线解析式,进而求出点C坐标,求出CD长,即可求出的面积.
【详解】
解:(1)∵点,点在反比例函数的图象上,
∴.
解得.
∴.
∴反比例函数的表达式是.
(2)∵,
∴点A,点B的坐标分别是.
∵点A,点B在一次函数的图象上,
∴
解得
∴一次函数的表达式是.
当时,.
∴点C的坐标是.
∴.
∵点D是点C关于原点O的对称点,
∴.
作轴于点E,
∴.
【点睛】
本题为一次函数与反比例函数综合题,难度不大,解题关键是根据点A、B都在反比例函数图象上,得到关键a的方程,求出a,得到点A、B坐标.
55.如图,在平面直角坐标系中,反比例函数的图像经过点,点在轴的负半轴上,交轴于点,为线段的中点.
(1)________,点的坐标为________;
(2)若点为线段上的一个动点,过点作轴,交反比例函数图像于点,求面积的最大值.
【答案】(1)m=6,;(2)当a=1时,面积的最大值为
【解析】
【分析】
(1)将点代入反比例函数解析式求出m,根据坐标中点公式求出点C的横坐标即可;
(2)由AC两点坐标求出直线AB的解析式为,设D坐标为,则,进而得到,即可解答
【详解】
解:(1)把点代入反比例函数,得:,
解得:m=6,
∵A点横坐标为:4,B点横坐标为0,故C点横坐标为:,
故答案为:6,;
(2)设直线对应的函数表达式为.
将,代入得,解得.
所以直线对应的函数表达式为.
因为点在线段上,可设,
因为轴,交反比例函数图像于点.所以.
所以.
所以当a=1时,面积的最大值为.
【点睛】
本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.
56.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于D、E两点,连结CE,交x轴于点F.
(1)求双曲线y=(k≠0)和直线DE的解析式.
(2)求的面积.
【答案】(1)y=,y=3x﹣3;(2)
【解析】
【分析】
(1)作DM⊥y轴于M,通过证得(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=(k≠0)和直线DE的解析式.
(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.
【详解】
解:∵点A的坐标为(0,2),点B的坐标为(1,0),
∴OA=2,OB=1,
作DM⊥y轴于M,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴∠OAB+∠DAM=90°,
∵∠OAB+∠ABO=90°,
∴∠DAM=∠ABO,
在和中
,
∴(AAS),
∴AM=OB=1,DM=OA=2,
∴D(2,3),
∵双曲线经过D点,
∴k=2×3=6,
∴双曲线为y=,
设直线DE的解析式为y=mx+n,
把B(1,0),D(2,3)代入得,
解得,
∴直线DE的解析式为y=3x﹣3;
(2)连接AC,交BD于N,
∵四边形ABCD是正方形,
∴BD垂直平分AC,AC=BD,
解
得或,
经检验:两组解都符合题意,
∴E(﹣1,﹣6),
∵B(1,0),D(2,3),
∴DE==,DB==,
∴CN=BD=,
∴
【点睛】
本题考查的是正方形的性质,三角形全等的判定与性质,利用待定系数法求解一次函数与反比例函数的解析式,函数的交点坐标的求解,化为一元二次方程的分式方程的解法,勾股定理的应用,掌握以上知识是解题的关键.
57.如图,过直线上一点作轴于点,线段交函数的图像于点,点为线段的中点,点关于直线的对称点的坐标为.
(1)求、的值;
(2)求直线与函数图像的交点坐标;
(3)直接写出不等式的解集.
【答案】(1)3,;(2)(2,);(3)0<x<
【解析】
【分析】
(1)根据点C′在反比例函数图像上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;
(2)将两个函数表达式联立,得到一元二次方程,求解即可;
(3)根据(2)中交点坐标,结合图像得出结果.
【详解】
解:(1)∵C′的坐标为(1,3),
代入中,
得:m=1×3=3,
∵C和C′关于直线y=x对称,
∴点C的坐标为(3,1),
∵点C为PD中点,
∴点P(3,2),
将点P代入,
∴解得:k=;
∴k和m的值分别为:3,;
(2)联立:,得:,
解得:,(舍),
∴直线与函数图像的交点坐标为(2,);
(3)∵两个函数的交点为:(2,),
由图像可知:当0<x<时,反比例函数图像在一次函数图像上面,
∴不等式的解集为:0<x<.
【点睛】
本题考查了一次函数与反比例函数综合,一元二次方程,图像法解不等式,解题的关键是利用数形结合的思想,结合图像解决问题.
58.经过实验获得两个变量x(x>0),y(y>0)的一组对应值如下表.
x
1
2
3
4
5
6
y
6
2.9
2
1.5
1.2
1
(1)请画出相应函数的图象,并求出函数表达式.
(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.
【答案】(1)图象见解析,();(2)y1>y2,理由见解析.
【解析】
【分析】
(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式;
(2)根据反比例函数的性质解答即可.
【详解】
解:(1)函数图象如图所示,设函数表达式为,
把x=1,y=6代入,得k=6,
∴函数表达式为();
(2)∵k=6>0,
∴在第一象限,y随x的增大而减小,
∴0<x1<x2时,则y1>y2.
【点睛】
本题主要考查反比例函数图象的特点和求函数关系表达式,解题的关键是求出函数表达式,并熟悉反比例函数的性质和特点.
59.如图,在平面直角坐标系中,一次函数和的图象相交于点,反比例函数的图象经过点.
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为,连接,求的面积.
【答案】(1)反比例函数的表达式为;(2)的面积为.
【解析】
【分析】
(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;
(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.
【详解】
(1)由题意:联立直线方程,可得,故A点坐标为(-2,4)
将A(-2,4)代入反比例函数表达式,有,∴
故反比例函数的表达式为
(2)联立直线与反比例函数,
解得,当时,,故B(-8,1)
如图,过A,B两点分别作轴的垂线,交轴于M、N两点,由模型可知
S梯形AMNB=S△AOB,
∴S梯形AMNB=S△AOB===
【点睛】
此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.
60.如图,已知点在双曲线上,过点的直线与双曲线的另一支交于点.
(1)求直线的解析式;
(2)过点作轴于点,连结,过点作于点.求线段的长.
【答案】(1);(2)
【解析】
【分析】
(1)由点在双曲线上,求得反比例函数解析式,再由点B在双曲线上,求得点B坐标,利用待定系数法求直线AB的解析式即可;
(2)用两种方式表示△ABC的面积可得,即可求出CD的长.
【详解】
解:(1)将点代入,得,即,
将代入,得,即,
设直线的解析式为,
将、代入,得
,解得
∴直线的解析式为.
(2)∵、,
∴,
∵轴,
∴BC=4,
∵,
∴.
【点睛】
本题考查了反比例函数上点坐标的特征,待定系数法求一次函数解析式,两点距离公式,面积法等知识,面积法:是用两种方式表示同一图形的面积.
61.在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.
(1)y关于x的函数关系式是________, x的取值范围是________;
(2)在平面直角坐标系中画出该函数图象;
(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.
【答案】(1)y=,x>0;(2)见解析;(3)1
【解析】
【分析】
(1)根据三角形的面积公式即可得出函数关系式,再根据实际意义得出x的取值范围;
(2)在平面直角坐标系中画出图像即可;
(3)得到平移后的一次函数表达式,再和反比例函数联立,得到一元二次方程,再结合交点个数得到根的判别式为零,即可求出a值.
【详解】
解:(1)由题意可得:
S△ABC=xy=2,
则:y=,
其中x的取值范围是x>0,
故答案为:y=,x>0;
(2)函数y=(x>0)的图像如图所示;
(3)将直线y=-x+3向上平移a(a>0)个单位长度后得到y=-x+3+a,
若与函数y=(x>0)只有一个交点,
联立:,
得:,
则,
解得:a=1或-7(舍),
∴a的值为1.
【点睛】
本题考查了一次函数,反比例函数的综合,以及一元二次方程根的判别式,解题的关键是理解题意,将函数交点问题转化为一元二次方程根的问题.
62.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.
(1)求一次函数的解析式;
(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.
【答案】(1)一次函数的解析式为y=2x+12;(2)(﹣3,6).
【解析】
【分析】
(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;
(2)联立一次函数解析式和反比例函数解析式可得2x2+12x﹣m=0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.
【详解】
解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得
,
解得,
∴一次函数的解析式为y=2x+12;
(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,
∴只有一组解,
即2x2+12x﹣m=0有两个相等的实数根,
∴△=122﹣4×2×(﹣m)=0,
∴m=-18.
把m=-18代入求得该方程的解为:x=-3,
把x=-3代入y=2x+12得:y=6,
即所求的交点坐标为(-3,6).
【点睛】
本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.
63.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.
(1)求y与x之间的函数关系式;
(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小: y1-y2 y2-y3.
【答案】(1);(2)
【解析】
【分析】
(1)设反比例函数解析式为,将点(3,400)代入求出即可,最后注意自变量的取值范围.
(2) 分别将x的值为6,8,10时,对应的函数值分别为y1,y2,y3的值求出,然后再比较大小求解.
【详解】
解:(1) 设反比例函数解析式为
将点(3,400)代入,即得
故反比例函数的解析式为:.
故答案为:.
(2)当x=6时,代入反比例函数中,解得,
当x=8时,代入反比例函数中,解得,
当x=10时,代入反比例函数中,解得,
∴
∴.
故答案为:>.
【点睛】
本题考查了反比例函数的解析式求法、反比例函数的图像性质等,点在反比例函数上,则将点的坐标代入解析式中,得到等式进而求解.
64.设函数y1=,y2=﹣(k>0).
(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.
(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?
【答案】(1)a=2,k=4;(2)圆圆的说法不正确,理由见解析
【解析】
【分析】
(1)由反比例函数的性质可得,①;﹣=a﹣4,②;可求a的值和k的值;
(2)设m=m0,且﹣1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.
【详解】
解:(1)∵k>0,2≤x≤3,
∴y1随x的增大而减小,y2随x的增大而增大,
∴当x=2时,y1最大值为,①;
当x=2时,y2最小值为﹣=a﹣4,②;
由①,②得:a=2,k=4;
(2)圆圆的说法不正确,
理由如下:设m=m0,且﹣1<m0<0,
则m0<0,m0+1>0,
∴当x=m0时,p=y1= ,
当x=m0+1时,q=y1=,
∴p<0<q,
∴圆圆的说法不正确.
【点睛】
此题考查反比例函数的性质特点,难度一般,能结合函数的增减性分析是解题关键.
初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版): 这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共77页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题54图形的相似(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版): 这是一份初中数学中考复习 专题54图形的相似(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共233页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题48圆(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版): 这是一份初中数学中考复习 专题48圆(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共205页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

