|试卷下载
搜索
    上传资料 赚现金
    初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】
    立即下载
    加入资料篮
    初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】01
    初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】02
    初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】

    展开
    这是一份初中数学中考复习 专题23圆的有关性质(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共32页。

    备战2023年中考数学必刷真题考点分类专练(全国通用)

    专题23圆的有关性质(共38题)
    一.选择题(共17小题)
    1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为(  )

    A.22° B.32° C.34° D.44°
    【分析】连接OE,根据等腰三角形的性质求出∠OCB,根据三角形内角和定理求出∠BOC,进而求出∠COE,再根据圆心角定理计算即可.
    【解析】连接OE,
    ∵OC=OB,∠ABC=22°,
    ∴∠OCB=∠ABC=22°,
    ∴∠BOC=180°﹣22°×2=136°,
    ∵E是劣弧的中点,
    ∴=,
    ∴∠COE=×136°=68°,
    由圆周角定理得:∠CDE=∠COE=×68°=34°,
    故选:C.

    2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C=110°,则∠OBD=(  )

    A.15° B.20° C.25° D.30°
    【分析】根据圆内接四边形的性质,可以得到∠A的度数,再根据圆周角和圆心角的关系,可以得到∠BOD的度数,然后根据OB=OD,即可得到∠OBD的度数.
    【解析】∵四边形ABCD是圆内接四边形,∠C=110°,
    ∴∠A=70°,
    ∵∠BOD=2∠A=140°,
    ∵OB=OD,
    ∴∠OBD=∠ODB,
    ∵∠OBD+∠ODB+∠BOD=180°,
    ∴∠OBD=20°,
    故选:B.
    3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为(  )

    A.10cm B.15cm C.20cm D.24cm
    【分析】连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,由矩形的判断方法得出四边形ACDB是矩形,得出AB∥CD,AB=CD=16cm,由切线的性质得出OE⊥CD,得出OE⊥AB,得出四边形EFBD是矩形,AF=AB=×16=8(cm),进而得出EF=BD=4cm,设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,由勾股定理得出方程r2=82+(r﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.
    【解析】如图,连接OE,交AB于点F,连接OA,

    ∵AC⊥CD、BD⊥CD,
    ∴AC∥BD,
    ∵AC=BD=4cm,
    ∴四边形ACDB是平行四边形,
    ∴四边形ACDB是矩形,
    ∴AB∥CD,AB=CD=16cm,
    ∵CD切⊙O于点E,
    ∴OE⊥CD,
    ∴OE⊥AB,
    ∴四边形EFBD是矩形,AF=AB=×16=8(cm),
    ∴EF=BD=4cm,
    设⊙O的半径为rcm,则OA=rcm,OF=OE﹣EF=(r﹣4)cm,
    在Rt△AOF中,OA2=AF2+OF2,
    ∴r2=82+(r﹣4)2,
    解得:r=10,
    ∴这种铁球的直径为20cm,
    故选:C.
    4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?(  )

    A.3 B.4 C. D.
    【分析】根据垂径定理可以得到CD的长,根据题意可知OD=3,然后根据勾股定理可以求得OC的长.
    【解析】作OD⊥AB于点D,如图所示,
    由题意可知:AC=6,BC=2,OD=3,
    ∴AB=8,
    ∴AD=BD=4,
    ∴CD=2,
    ∴OC===,
    故选:D.

    5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是(  )

    A.60° B.65° C.70° D.75°
    【分析】连接BD,根据直径所对的圆周角是直角可得∠ABD=90°,从而可求出∠CBD的度数,然后利用同弧所对的圆周角相等即可解答.
    【解析】连接BD,

    ∵AD是⊙O的直径,
    ∴∠ABD=90°,
    ∵∠ABC=20°,
    ∴∠CBD=∠ABD﹣∠ABC=70°,
    ∴∠CAD=∠CBD=70°,
    故选:C.

    6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为(  )

    A.25° B.35° C.45° D.65°
    【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.
    【解析】∵AB是直径,
    ∴∠ACB=90°,
    ∵∠CAB=65°,
    ∴∠ABC=90°﹣∠CAB=25°,
    ∴∠ADC=∠ABC=25°,
    故选:A.
    7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为(  )

    A.55° B.65° C.75° D.130°
    【分析】根据同弧所对的圆周角等于圆心角的一半即可得出∠BAC的度数.
    【解析】∵∠BOC=130°,点A在上,
    ∴∠BAC=∠BOC==65°,
    故选:B.
    8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=(  )

    A.44° B.45° C.54° D.67°
    【分析】根据圆周角定理可得∠AOB的度数,再进一步根据等腰三角形和三角形的内角和定理可求解.
    【解析】如图,连接OB,

    ∵∠C=46°,
    ∴∠AOB=2∠C=92°,
    ∵OA=OB,
    ∴∠OAB==44°.
    故选:A.
    9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为(  )

    A.115° B.118° C.120° D.125°
    【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.
    【解析】四边形EFDA是⊙O内接四边形,
    ∴∠EFD+∠A=180°,
    ∵等边△ABC的顶点A在⊙O上,
    ∴∠A=60°,
    ∴∠EFD=120°,
    故选:C.
    10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为(  )

    A.2 B.3 C.2 D.
    【分析】根据圆周角定理及推论解答即可.
    【解析】连接CO并延长CO交⊙O于点E,连接AE,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠ACD=∠CAB,
    ∴∠ACD=∠ACO,
    ∴AE=AD=2,
    ∵CE是直径,
    ∴∠EAC=90°,
    在Rt△EAC中,AE=2,AC=4,
    ∴EC==2,
    ∴⊙O的半径为.
    故选:D.

    11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为(  )

    A.95° B.100° C.105° D.130°
    【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.
    【解析】∵OD⊥AB,OE⊥AC,
    ∴∠ADO=90°,∠AEO=90°,
    ∵∠DOE=130°,
    ∴∠BAC=360°﹣90°﹣90°﹣130°=50°,
    ∴∠BOC=2∠BAC=100°,
    故选:B.
    12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为(  )

    A.32° B.42° C.52° D.62°
    【分析】根据圆周角定理,可以得到∠D的度数,再根据三角形外角的性质,可以求出∠B的度数.
    【解析】∵∠A=∠D,∠A=48°,
    ∴∠D=48°,
    ∵∠APD=80°,∠APD=∠B+∠D,
    ∴∠B=∠APD﹣∠D=80°﹣48°=32°,
    故选:A.
    13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是(  )

    A.1 B. C.2 D.4
    【分析】由垂径定理可知,点D是AC的中点,则OD是△ABC的中位线,所以OD=BC,设OD=x,则BC=2x,则OE=4﹣x,AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得AB2=AC2+BC2,即(8﹣2x)2=(4)2+(2x)2,求出x的值即可得出结论.
    【解析】∵AB是⊙O的直径,
    ∴∠C=90°,
    ∵OD⊥AC,
    ∴点D是AC的中点,
    ∴OD是△ABC的中位线,
    ∴OD∥BC,且OD=BC,
    设OD=x,则BC=2x,
    ∵DE=4,
    ∴OE=4﹣x,
    ∴AB=2OE=8﹣2x,
    在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,
    ∴(8﹣2x)2=(4)2+(2x)2,
    解得x=1.
    ∴BC=2x=2.
    故选:C.
    14.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=(  )
    A. B.4 C. D.5
    【分析】过点O作OC⊥AB于点C,连接OB,根据垂径定理可得AC=BC=5,所以PC=PB﹣BC=1,根据勾股定理即可解决问题.
    【解析】如图,过点O作OC⊥AB于点C,连接OB,
    则OB=7,

    ∵PA=4,PB=6,
    ∴AB=PA+PB=10,
    ∵OC⊥AB,
    ∴AC=BC=5,
    ∴PC=PB﹣BC=1,
    在Rt△OBC中,根据勾股定理得:
    OC2=OB2﹣BC2=72﹣52=24,
    在Rt△OPC中,根据勾股定理得:
    OP===5,
    故选:D.
    15.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD=20°,则∠BCD的度数是(  )

    A.90° B.100° C.110° D.120°
    【分析】方法一:根据圆周角定理可以得到∠AOD的度数,再根据三角形内角和可以求得∠OAD的度数,然后根据圆内接四边形对角互补,即可得到∠BCD的度数.
    方法二:根据AB是⊙O的直径,可以得到∠ADB=90°,再根据∠ABD=20°和三角形内角和,可以得到∠A的度数,然后根据圆内接四边形对角互补,即可得到∠BCD的度数.
    【解析】方法一:连接OD,如图所示,
    ∵∠ABD=20°,
    ∴∠AOD=40°,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵∠OAD+∠ODA+∠AOD=180°,
    ∴∠OAD=∠ODA=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠OAD+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.
    方法二:∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ABD=20°,
    ∴∠A=70°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠A+∠BCD=180°,
    ∴∠BCD=110°,
    故选:C.

    16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为(  )

    A.70° B.65° C.50° D.45°
    【分析】先根据三角形的内角和定理可得∠B=25°,由垂径定理得:=,最后由圆周角定理可得结论.
    【解析】∵OF⊥BC,
    ∴∠BFO=90°,
    ∵∠BOF=65°,
    ∴∠B=90°﹣65°=25°,
    ∵弦CD⊥AB,AB为⊙O的直径,
    ∴=,
    ∴∠AOD=2∠B=50°.
    故选:C.
    17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为(  )

    A. B. C. D.
    【分析】利用垂径定理求得CE,利用余弦的定义在Rt△OCE中解答即可.
    【解析】∵AB是⊙O的直径,AB⊥CD,
    ∴CE=DE=CD=12,
    ∵AB=26,
    ∴OC=13.
    ∴cos∠OCE=.
    故选:B.
    二.填空题(共14小题)
    18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于  100° .

    【分析】根据圆周角定理解答即可.
    【解析】由圆周角定理得:∠AOC=2∠ABC,
    ∵∠ABC=50°,
    ∴∠AOC=100°,
    故答案为:100°.
    19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为   (结果保留π).

    【分析】由圆周角定理可得∠BOE的大小,从而可得∠BOC+∠DOE的大小,进而求解.
    【解析】∵∠BAE=65°,
    ∴∠BOE=130°,
    ∴∠BOC+∠DOE=∠BOE﹣∠COD=60°,
    ∴+的长度=×2π×1=,
    故答案为:π.
    20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为  144° .

    【分析】根据邻补角的概念求出∠BCD,根据圆内接四边形的性质求出∠A,根据圆周角定理解答即可.
    【解析】∵∠DCE=72°,
    ∴∠BCD=180°﹣∠DCE=108°,
    ∵四边形ABCD内接于⊙O,
    ∴∠A=180°﹣∠BCD=72°,
    由圆周角定理,得∠BOD=2∠A=144°,
    故答案为:144°.
    21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为  7 .

    【分析】根据已知条件证得△AOD≌△BCD(SAS),则BC=OA=7.
    【解析】∵OA=OC=7,且D为OC的中点,
    ∴OD=CD,
    ∵OC⊥AB,
    ∴∠ODA=∠CDB=90°,AD=BD,
    在△AOD和△BCD中,

    ∴△AOD≌△BCD(SAS),
    ∴BC=OA=7.
    故答案为:7.
    22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC= 120 度.

    【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求出∠AOC的度数,根据平角的定义即可得到∠BOC=180°﹣∠AOC的度数.
    【解析】∵∠ADC是所对的圆周角,
    ∴∠AOC=2∠ADC=2×30°=60°,
    ∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.
    故答案为:120.
    23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为  120° .

    【分析】根据圆周角定理解答即可.
    【解析】由圆周角定理得:∠AOC=2∠ABC,
    ∵∠ABC=60°,
    ∴∠AOC=120°,
    故答案为:120°.
    24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D= 62 °.

    【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.
    【解析】如图,连接BC.

    ∵AB是直径,
    ∴∠ACB=90°,
    ∴∠ABC=90°﹣∠CAB=62°,
    ∴∠D=∠ABC=62°,
    故答案为:62.
    25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为  7.5 cm(玻璃瓶厚度忽略不计).

    【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.
    【解析】如图,设球心为O,过O作OM⊥AD于M,连接OA,
    设球的半径为rcm,
    由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),
    由垂径定理得:AM=DM=AD=6(cm),
    在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,
    即62+(12﹣r)2=r2,
    解得:r=7.5,
    即球的半径为7.5cm,
    故答案为:7.5.

    26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC= 70 °.

    【分析】根据圆内接四边形的对角互补即可得到结论.
    【解析】∵四边形ABCD内接于⊙O,∠ABC=110°,
    ∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,
    故答案为:70.
    27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是  30° .

    【分析】由垂径定理得出,由圆心角、弧、弦的关系定理得出∠AOD=∠BOD,进而得出∠AOD=60°,由圆周角定理得出∠APD=∠AOD=30°,得出答案.
    【解析】∵OC⊥AB,
    ∴,
    ∴∠AOD=∠BOD,
    ∵∠AOB=120°,
    ∴∠AOD=∠BOD=∠AOB=60°,
    ∴∠APD=∠AOD=×60°=30°,
    故答案为:30°.
    28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为 2 .

    【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.
    【解析】连接OA,由AB垂直平分OC,得到OD=OC=1,
    ∵OC⊥AB,
    ∴D为AB的中点,
    则AB=2AD=2=2=2.
    故答案为:2.

    29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为  26 厘米.

    【分析】根据题意,弦AB长20厘米,弓形高CD为2厘米,根据勾股定理和垂径定理可以求得圆的半径.
    【解析】如图,点O是圆形玻璃镜面的圆心,连接OC,则点C,点D,点O三点共线,

    由题意可得:OC⊥AB,AC=AB=10(厘米),
    设镜面半径为x厘米,
    由题意可得:x2=102+(x﹣2)2,
    ∴x=26,
    ∴镜面半径为26厘米,
    故答案为:26.
    30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于  2 .

    【分析】连接OA,OC,由圆内接四边形可求得∠ABC的度数,由圆周角定理可得∠AOC=60°,即可证得△OAC为等边三角形,进而可求解.
    【解析】连接OA,OC,

    ∵四边形ABCD是⊙O的内接四边形,
    ∴∠ADC+∠ABC=180°,
    ∵∠ADC=150°,
    ∴∠ABC=30°,
    ∴∠AOC=2∠ABC=60°,
    ∵OA=OC,
    ∴△OAC为等边三角形,
    ∴OA=AC=2,
    即⊙O的半径为2.
    故答案为:2.
    31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.
    小组成员查阅相关资料,得到如下信息:
    信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
    信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;
    (参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
    根据以上信息,北纬28°纬线的长度约为  33792 千米.

    【分析】根据垂径定理,平行线的性质,锐角三角函数的定义求解.
    【解析】作OK⊥BC,则∠BKO=90°,
    ∵BC∥OA,∠AOB=28°,
    ∵∠B=∠AOB=28°,
    在Rt△BOK中,OB=OA=6400.
    ∴BK=OB×cosB=6400×0.88≈5632,
    ∴北纬28°的纬线长C=2π•BK
    =2×3×5632
    ≈33792(千米).
    故答案为:33792.

    三.解答题(共7小题)
    32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.
    (1)直接判断AD与BD的数量关系;
    (2)求这座石拱桥主桥拱的半径(精确到1m).

    【分析】(1)根据垂径定理便可得出结论;
    (2)设主桥拱半径为R,在Rt△OBD中,根据勾股定理列出R的方程便可求得结果.
    【解析】(1)∵OC⊥AB,
    ∴AD=BD;
    (2)设主桥拱半径为R,由题意可知AB=26,CD=5,
    ∴BD=AB=13,
    OD=OC﹣CD=R﹣5,
    ∵∠OBD=90°,
    ∴OD2+BD2=OB2,
    ∴(R﹣5)2+132=R2,
    解得R=19.4≈19,
    答:这座石拱桥主桥拱的半径约为19m.
    33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.
    (1)判断△BDE的形状,并证明你的结论;
    (2)若AB=10,BE=2,求BC的长.

    【分析】(1)由角平分线的定义可知,∠BAE=∠CAD=∠CBD,∠ABE=∠EBC,所以∠BED=∠DBE,所以BD=ED,因为AB为直径,所以∠ADB=90°,所以△BDE是等腰直角三角形.
    (2)连接OC、CD、OD,OD交BC于点F.因为∠DBC=∠CAD=∠BAD=∠BCD.所以BD=DC.因为OB=OC.所以OD垂直平分BC.由△BDE是等腰直角三角形,BE=2,可得BD=2.因为OB=OD=5.设OF=t,则DF=5﹣t.在Rt△BOF和Rt△BDF中,52﹣t2=(2)2﹣(5﹣t)2,解出t的值即可.
    【解析】(1)△BDE为等腰直角三角形.理由如下:
    ∵AE 平分∠BAC,BE 平分∠ABC,
    ∴∠BAE=∠CAD=∠CBD,∠ABE=∠EBC.
    ∵∠BED=∠BAE+∠ABE,∠DBE=∠DBC+∠CBE,
    ∴∠BED=∠DBE.
    ∴BD=ED.
    ∵AB为直径,
    ∴∠ADB=90°
    ∴△BDE是等腰直角三角形.
    另解:计算∠AEB=135°也可以得证.
    (2)解:连接OC、CD、OD,OD交BC于点F.
    ∵∠DBC=∠CAD=∠BAD=∠BCD.
    ∴BD=DC.
    ∵OB=OC.
    ∴OD垂直平分BC.
    ∵△BDE是等腰直角三角形,BE=2,
    ∴BD=2.
    ∵AB=10,
    ∴OB=OD=5.
    设OF=t,则DF=5﹣t.
    在Rt△BOF和Rt△BDF中,52﹣t2=(2)2﹣(5﹣t)2,
    解得t=3,
    ∴BF=4.
    ∴BC=8.
    另解:分别延长AC,BD相交于点G.则△MBG为等腰三角形,先计算AG=10,BG=4,AD=4,再根据面积相等求得BC.

    34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.
    求证:(1)AC=BD;
    (2)△ABE∽△DCE.

    【分析】(1)根据等式的性质可得:,再由圆心角,弧,弦的关系可得结论;
    (2)根据两角相等可证明两三角形相似.
    【解析】证明:(1)∵=,
    ∴,
    ∴AC=BD;
    (2)∵∠A=∠D,∠B=∠C,
    ∴△ABE∽△DCE.
    35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.
    (1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.
    (2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.

    【分析】(1)证明四边形DEGF是平行四边形,可得结论;
    (2)当tan∠ABC=2时,EF垂直平分线段AC.证明OJ∥AC,可得结论.
    【解析】(1)证明:∵四边形BCFG,四边形BCDE都是菱形,
    ∴CF∥BG,CD∥BE,CB=CF=CD=BG=BE,
    ∵D,C,F共线,
    ∴G,B,E共线,
    ∴DF∥EG,DF=GE,
    ∴四边形DEGF是平行四边形,
    ∴EF与BC互相平分.
    当EF⊥FG时,∵GF=BG=BE,
    ∴EG=2GF,
    ∴∠GEF=30°,
    ∴θ=90°﹣30°=60°;

    (2)解:当tan∠ABC=2时,EF垂直平分线段AC.
    理由:如图(2)中,设AC交EF于点J.

    ∵四边形BCFG是菱形,
    ∴∠G=∠FCO=90°,
    ∵EF与BC互相平分,
    ∴OC=OB,
    ∴CF=BC,
    ∴FC=2OC,
    ∴tan∠FOC=tan∠ABC,
    ∴∠ABC=∠FOC,
    ∴OJ∥AB,
    ∵OC=OB,
    ∴CJ=AJ,
    ∵BC是直径,
    ∴∠BAC=∠OJC=90°,
    ∴EF垂直平分线段AC.
    36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
    (1)若AB=AC,求证:∠ADB=∠ADE;
    (2)若BC=3,⊙O的半径为2,求sin∠BAC.

    【分析】(1)根据圆内接四边形的性质以及等腰三角形的性质即可求证;
    (2)连接CO并延长交⊙O于点F,连接BF,根据圆周角定理得出∠FBC=90°,∠F=∠BAC,解直角三角形即可得解.
    【解析】(1)证明:∵四边形ABCD是⊙O的内接四边形,
    ∴∠ADE=∠ABC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠ACB=∠ADB,
    ∴∠ADB=∠ADE;
    (2)解:连接CO并延长交⊙O于点F,连接BF,

    则∠FBC=90°,
    在Rt△BCF中,CF=4,BC=3,
    ∴sinF==,
    ∵∠F=∠BAC,
    ∴sin∠BAC=.
    37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.
    (1)求证:FB2=FE•FG;
    (2)若AB=6,求FB和EG的长.

    【分析】(1)利用相似三角形的判定与性质解答即可;
    (2)连接OE,利用平行线分线段成比例定理求得FB;利用相交弦定理求EG即可.
    【解析】(1)证明:∵四边形ABCD是正方形,
    ∴AD=BC,
    ∴.
    ∴∠DAB=∠G.
    ∵∠EFB=∠BFG,
    ∴△EFB∽△BFG,
    ∴,
    ∴FB2=FE•FG;
    (2)解:连接OE,如图,

    ∵AB=AD=6,∠A=90°,
    ∴BD==6.
    ∴OB=BD=3.
    ∵点E为AB的中点,
    ∴OE⊥AB,
    ∵四边形ABCD是正方形,
    ∴BC⊥AB,∠DBA=45°,AB=BC,
    ∴OE∥BC,OE=BE=AB.
    ∴.
    ∴,
    ∴,
    ∴BF=2;
    ∵点E为AB的中点,
    ∴AE=BE=3,
    ∴EC==3.
    ∵AE•BE=EG•EC,
    ∴EG=.
    38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.
    (1)试判断△ABC的形状,并给出证明;
    (2)若AB=,AD=1,求CD的长度.

    【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;
    (2)根据勾股定理解答即可.
    【解析】(1)△ABC是等腰直角三角形,证明过程如下:
    ∵AC为⊙O的直径,
    ∴∠ADC=∠ABC=90°,
    ∵∠ADB=∠CDB,
    ∴,
    ∴AB=BC,
    又∵∠ABC=90°,
    ∴△ABC是等腰直角三角形.
    (2)在Rt△ABC中,AB=BC=,
    ∴AC=2,
    在Rt△ADC中,AD=1,AC=2,
    ∴CD=.
    即CD的长为:.



    相关试卷

    专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用): 这是一份专题20图形的旋转(共38题)-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题20图形的旋转共38题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题20图形的旋转共38题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。

    初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题28概率(共60题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共19页。

    初中数学中考复习 专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】: 这是一份初中数学中考复习 专题25圆的有关计算(共53题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共15页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map