初中数学中考复习 题型10 二次函数的综合应用题(原卷版)
展开
这是一份初中数学中考复习 题型10 二次函数的综合应用题(原卷版),共30页。试卷主要包含了解答题等内容,欢迎下载使用。
备战2020年中考数学十大题型专练卷
题型10 二次函数的综合应用题
一、解答题
1.如图,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:与y轴交于点C,与抛物线的另一个交点为D,已知,P点为抛物线上一动点(不与A、D重合).
(1)求抛物线和直线l的解析式;
(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作轴交直线l于点F,求的最大值;
(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
2.已知二次函数的图象过点,点(与0不重合)是图象上的一点,直线过点且平行于轴.于点,点.
(1)求二次函数的解析式;
(2)求证:点在线段的中垂线上;
(3)设直线交二次函数的图象于另一点,于点,线段的中垂线交于点,求的值;
(4)试判断点与以线段为直径的圆的位置关系.
3.如图,抛物线与轴交于点A(-1,0),点B(-3,0),且OB=OC,
(1)求抛物线的解析式;
(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E,
①求DE的最大值.
②点D关于点E的对称点为F.当m为何值时,四边形MDNF为矩形?
4.如图,已知直线与抛物线: 相交于和点两点.
⑴求抛物线的函数表达式;
⑵若点是位于直线上方抛物线上的一动点,以为相邻两边作平行四边形,当平行四边形的面积最大时,求此时四边形的面积及点的坐标;
⑶在抛物线的对称轴上是否存在定点,使抛物线上任意一点到点的距离等于到直线的距离,若存在,求出定点的坐标;若不存在,请说明理由.
5.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
(1)求抛物线的解析式;
(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.
6.如图,在直角坐标系中,直线与轴,轴分别交于点,点,对称轴为的抛物线过两点,且交轴于另一点,连接.
(1)直接写出点,点,点的坐标和抛物线的解析式;
(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;
(3)抛物线上是否存在一点(点除外),使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
7.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.
(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;
(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度(0°
相关试卷
这是一份初中数学中考复习 专题11 二次函数综合(原卷版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题10 圆的综合运用(原卷版),共14页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份初中数学中考复习 题型10 二次函数的综合应用题(解析版),共83页。试卷主要包含了解答题等内容,欢迎下载使用。