初中数学中考复习 第4关 以动点函数图象问题为背景的选择填空题(解析版)
展开这是一份初中数学中考复习 第4关 以动点函数图象问题为背景的选择填空题(解析版),共25页。
第4关 以动点函数图象问题为背景的选择填空题
【考查知识点】
这类问题通过点、线或图形的运动构成一种函数关系,生成一种函数图像,将几何图形与函数图像有机地融合在一起,体现了数形结合的思想,能充分考查学生的观察、分析、归纳、猜想的能力以及综合运用所学知识解决问题的能力。
【解题思路】
解答此类问题的策略可以归纳为三步:“看” 、“写” 、“选”。
(1)“看”就是认真观察几何图形,彻底弄清楚动点从何点开始出发,运动到何点停止,整个运动过程分为不同的几段,何点(时刻)是特殊点(时刻),这是准确解答的前提和关键
(2)“写”就是计算、写出动点在不同路段的函数解析式,注意一定要注明自变量的取值范围,求出在特殊点的函数数值和自变量的值
(3)“选”就是根据解析式选择准确的函数图像或答案,多用排除法。首先,排除不符合函数类形的图像选项,其次,对于相同函数类型的函数图像选项,再用自变量的取值范围或函数数值的最大和最小值进行排除,选出准确答案。
【典型例题】
【例1】(2019·辽宁中考真题)如图,在中,,,于点G,点D为BC边上一动点,交射线CA于点E,作关于DE的轴对称图形得到,设CD的长为x,与重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是( )
A. B.
C. D.
【答案】A
【分析】根据等腰三角形的性质可得,由与关于DE对称,即可求出当点F与G重合时x的值,再根据分段函数解题即可.
【详解】解:,,,
与关于DE对称,
.当点F与G重合时,,即,,当点F与点B重合时,,即,,
如图1,当时,,∴B选项错误;
如图2,当时,,∴选项D错误;
如图3,当时,,∴选项C错误.
故选:A.
【名师点睛】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
【例2】(2019·甘肃中考真题)已知点为某个封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周,设点的运动时间为,线段的长度为,表示与的函数图象大致如图所示,则该封闭图形可能是( )
A. B. C. D.
【答案】D
【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,从而得到正确选项.
【详解】与的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;
A选项中的封闭图形为圆,开始随的增大而增大,然后随的减小而减小,所以A选项不正确;
D选项为三角形,点在三边上运动对应三段图象,且点在点的对边上运动时,的长有最小值.
故选:D.
【名师点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
【例3】(2018·安徽中考真题)如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间部分的长度和为y,则y关于x的函数图象大致为( )
A. B. C. D.
【答案】A
【解析】
【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1
如图,当0≤x≤1时,y=2,
如图,当1
如图,当2
综上,只有选项A符合,
故选A.
【名师点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.
【例4】(2019·四川中考真题)如图1,在四边形中,∥,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点、.设直线向右平移的距离为,线段的长为,且与的函数关系如图2所示,则四边形的周长是_____.
【答案】
【分析】根据图1直线l的平移过程分为三段,当F与A重合之前,x与y都不断增大,当当F与A重合之后到点E与点C重合之前,x增加y不变,E与点C重合后继续运动至F与D重合x增加y减小.结合图2可知BC=5,AD=7-4=3,由且∠B=30°可知AB=,当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长.
【详解】由题意和图像易知BC=5,AD=7-4=3
当BE=4时(即F与A重合),EF=2
又∵且∠B=30°
∴AB=,
∵当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形
∴CD=2
∴AB+BC+CD+AD=+5+2+3=10+
故答案时.
【名师点睛】
本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l平移的距离为,线段的长为的图像和直线运动的过程的联系,找到对应线段长度.
【方法归纳】从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质. 解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.
【针对练习】
1.(2019·四川中考真题)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是( )
A. B. C. D.
【答案】C
【详解】解:当时,,即S与t是二次函数关系,有最小值,开口向上,
当时,,即S与t是二次函数关系,开口向下,
由上可得,选项C符合题意,
故选:C.
2.(2018·湖北中考真题)如图,在中,,,,动点从点开始沿向点以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是( )
A. B. C. D.
【答案】C
【详解】由题意可得:PB=3-t,BQ=2t,
则△PBQ的面积S=PB•BQ=(3-t)×2t=-t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选C.
3.(2017·辽宁中考真题)如图,直线的解析式为,它与轴和轴分别相交于两点,平行于直线的直线从原点出发,沿轴的正方向以每秒1个单位长度的速度运动.它与轴和轴分别相交于两点,运动时间为秒(),以为斜边作等腰直角三角形(两点分别在两侧),若和的重合部分的面积为,则与之间的函数关系的图角大致是( )
A. B. C. D.
【答案】C
【详解】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.
当0<t≤2时,S=t2,
当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,
观察图象可知,S与t之间的函数关系的图象大致是C.
故答案为C.
4.(2019·黑龙江中考真题)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离与时间之间函数关系的是( )
A. B. C. D.
【答案】B
【详解】解:由题意可得,战士们从营地出发到文具店这段过程中,随的增加而增大,故选项A错误,战士们在文具店选购文具的过程中,随着的增加不变,战士们从文具店去福利院的过程中,随着的增加而增大,故选项C错误,战士们从福利院跑回营地的过程中,随着的增大而减小,且在单位时间内距离的变化比战士们从营地出发到文具店这段过程中快,故选项B正确,选项D错误,故选:B.
5.(2019·江苏中考真题)随着时代的进步,人们对(空气中直径小于等于微米的颗粒)的关注日益密切.某市一天中的值()随时间()的变化如图所示,设表示时到时的值的极差(即时到时的最大值与最小值的差),则与的函数关系大致是( )
A.B.
C.D.
【答案】B
【详解】当时,极差,
当时,极差随的增大而增大,最大值为;
当时,极差随的增大保持不变;
当时,极差随的增大而增大,最大值为;
故选:B.
6.(2019·河南中考模拟)如图1,在等边△ABC中,点D是BC边的中点,点P为AB边上的一个动点,设,图1中线段DP的长为,若表示与的函数关系的图象如图2所示,则等边△ABC的面积为_____.
【答案】4.
【详解】解:由图二可得y最小值=,
∵△ABC为等边三角形,分析图一可知,当P点运动到DP⊥AB时,DP长为最小值,
∴此时的DP=,
∵∠B=60°,
∴sin60°=,
解得BD=2,
∵D为BC的中点,
∴BC=4,连接AD,
∵△ABC为等边三角形,
∴AD⊥BC,
,
,
.
7.(2019·辽宁中考真题)如图,在等腰直角三角形ABC中,,,CH是AB边上的高,正方形DEFG的边DE在高CH上,F,G两点分别在AC,AH上.将正方形DEFG以每秒1cm的速度沿射线DB方向匀速运动,当点G与点B重合时停止运动.设运动时间为ts,正方形DEFG与重叠部分的面积为Scm2,则能反映S与t的函数关系的图象( )
A. B.
C. D.
【答案】B
【详解】由题意得:,,
(1)当时,如图1,设EF交CH于点K,则;
(2)时,如图2,设EF与BC交于点M,DE于BC交于点N,
;
(3)时,如图3,设GF交BC于点L,
;
故选B.
8.(2018·辽宁中考真题)如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )
A. B. C. D.
【答案】D
【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.
9.(2019·辽宁中考真题)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是( )
A. B.
C. D.
【答案】B
【详解】解:,
y=EF﹣EM﹣NF=2﹣BFtan∠DBC﹣AEtan∠DAH=2﹣x×﹣x()=x2﹣x+2,
故选:B.
10.(2015·北京中考真题)一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB,BC,CA,OA, OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:
A.A→O→B B.B→A→C C.B→O→C D.C→B→O
【答案】C
【详解】
此题考查动点函数问题,各项分别分析如下:A路线,A到O是减小,是直线型的,故错,B路线,在AB上是,开始减小,然后增大,但增大的时间比减小的时间要长,故不对;D路线中,应会出现距离为0的点,但图中没有故不对,故选C.
11.(2018·辽宁中考真题)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是( )
A. B.
C. D.
【答案】B
【详解】在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8,
当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;
当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;
当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260,
故选B.
12.(2019·贵州中考真题)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为( )
A. B.
C. D.
【答案】A
【详解】
当0≤x≤4时,
∵BO为△ABC的中线,EF∥AC,
∴BP为△BEF的中线,△BEF∽△BAC,
∴,即,解得y,
同理可得,当4<x≤8时,.
故选:A.
13.(2018·河南中考模拟)如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.
【答案】2.4cm
【详解】
由图2可得,AC=3,BC=4,
∴AB=.
当t=5时,如图所示:
,
此时AC+CP=5,故BP=AC+BC-AC-CP=2,
∵sin∠B==,
∴PD=BP·sin∠B=2×==1.2(cm).
故答案是:1.2 cm.
14.(2018·山东中考真题)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是( )
A. B. C. D.
【答案】A
【详解】解:由题意得:AP=t,AQ=2t,
①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,
S△APQ=AP•AQ==t2,
故选项C、D不正确;
②当4<t≤6时,Q在边BC上,P在边AD上,如图2,
S△APQ=AP•AB==4t,
故选项B不正确;
故选:A.
15.(2019·山东中考模拟)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为_____.
【答案】
【详解】
如图,连接PD.
∵B、D关于AC对称,
∴PB=PD,
∴PB+PE=PD+PE,
∴当D、P、E共线时,PE+PB的值最小,
观察图象可知,当点P与A重合时,PE+PB=9,
∴AE=EB=3,AD=AB=6,
在Rt△AED中,DE=,
∴PB+PE的最小值为3,
∴点H的纵坐标为3,
∵AE∥CD,
∴=2,
∵AC=6,
∴PC=×6=4,
∴点H的横坐标为4,
∴H(4,3).
故答案为(4,3).
16.(2017·青海中考真题)如图,在正方形中,,动点自点出发沿方向以每秒的速度运动,同时动点自点出发沿折线以每秒的速度运动,到达点时运动同时停止,设的面积为,运动时间为(秒),则下列图象中能大致反映与之间的函数关系的是( )
A. B. C. D.
【答案】A
【详解】
∵点N自D点出发沿折线DC﹣CB以每秒2cm的速度运动,到达B点时运动同时停止,
∴N到C的时间为:t=3÷2=1.5,
分两部分:
①当0≤x≤1.5时,如图1,此时N在DC上,S△AMN=y=AM•AD=x×3=x,
②当1.5<x≤3时,如图2,此时N在BC上,∴DC+CN=2x,∴BN=6﹣2x,∴S△AMN=y=AM•BN=x(6﹣2x)=﹣x2+3x,故选A.
17.(2017·山东中考真题)如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是( )
A.① B.④ C.②或④ D.①或③
【答案】D
【详解】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.故选D.
18.(2015·广东中考真题)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )
A.B. C.D.
【答案】D
【详解】根据题意,有AE=BF=CG,且正三角形ABC的边长为2,故BE=CF=AG=2-x;
故△AEG、△BEF、△CFG三个三角形全等.在△AEG中,AE=x,AG=2-x,
则S△AEG=AE×AG×sinA=x(2-x);
故y=S△ABC-3S△AEG=-3x(2-x)=(3x 2-6x+4).故可得其图象为二次函数,且开口向上,
19.(2017·湖北中考真题)如图,在中,点是的内心,连接过点作分别交于点,已知的周长为的周长为,则表示与的函数图象大致是 ( )
A.B.C.D.
【答案】B
【详解】∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,
∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,
∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,
∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,
即y与x的函数关系式为y=8﹣x(x<4),
故选B.
20.(2017·甘肃中考真题)如图①,在边长为4的正方形中,点以每秒的速度从点出发,沿的路径运动,到点停止.过点作,与边(或边)交于点,的长度与点的运动时间(秒)的函数图象如图②所示.当点运动2.5秒时,的长是( )
A. B. C. D.
【答案】B
【详解】当点P运动2.5秒时,CP=4+4-2.5×2=3,所以△CPQ是一个腰长是3的等腰直角三角形,则,PQ=,故答案选B.
21.(2017·内蒙古中考真题)如图,点在直线上方,且,于,若线段,,,则与的函数关系图象大致是( )
A. B. C. D.
【答案】D
【详解】∵PC⊥AB于C,∠APB=90°,
∴∠ACP=∠BCP=90°,
∴∠APC+∠BPC=∠APC+∠PAC=90°,
∴∠PAC=∠BPC,
∴△APC∽△PBC,
∴,
∵AB=6,AC=x,
∴BC=6﹣x,
∴PC2=x(6﹣x),
∴PC=,
∴y=AB•PC=3=3,
故选:D.
22.(2019·重庆中考真题)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.
【答案】6000
【详解】解:由题意可得,甲的速度为:4000÷(12-2-2)=500米/分,
乙的速度为: =1000米/分,
乙从与甲相遇到返回公司用的时间为4分钟,
则乙回到公司时,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),
故答案为6000.
23.如图所示,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为,△ABP的面积为,如果关于的函数图象如图所示,那么△ABC的面积是_____.
【答案】10
【详解】根据题意可得:AB=5,BC=4,
∴△ABC的面积是:×4×5=10.
故答案为10
24.(2016·重庆中考真题)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第____秒.
【答案】120
【详解】
设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意得:,解得:,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120.
则她们第一次相遇的时间是起跑后的第120秒.
故答案为120.
25.(2019·河南中考模拟)如图(图1),在△ABC中,∠B=45°,点P从△ABC的顶点出发,沿A→B→C匀速运动到点C,(图2)是点P运动时,线段AP的长度y随时间x变化的关系图象,其中M,N为曲线部分的两个端点,则△ABC的周长是_____.
【答案】24+8
【详解】
当P点从A到B运动时,AP逐渐增大,当P点到B点时,AP最大为AB长,从图2的图象可以看出AB=8;
当P点从B到C运动时,AP先逐渐减小而后逐渐增大,到C点时AP最大为AC长,从图2的图象可以看出AC=10.
过A点作AH⊥BC于H点,∵∠B=45°,∴AH=BH=AB=8.
在Rt△ACH中,=6.
∴BC=8+6=14.
所以△ABC的周长为8+10+14=24+8.
故答案为24+8.
26.(2018·辽宁中考真题)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为__.
【答案】24
【详解】
从图象②和已知可知:AB=4,BC=10-4=6,
所以矩形ABCD的面积是4×6=24,
故答案为:24.
相关试卷
这是一份初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(解析版),共15页。
这是一份初中数学中考复习 第5关 以数字及图形规律探究问题为背景的选择填空题(解析版),共23页。
这是一份初中数学中考复习 第4关 以动点函数图象问题为背景的选择填空题(原卷版),共13页。