![通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)01](http://img-preview.51jiaoxi.com/2/3/13891878/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)02](http://img-preview.51jiaoxi.com/2/3/13891878/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)03](http://img-preview.51jiaoxi.com/2/3/13891878/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)04](http://img-preview.51jiaoxi.com/2/3/13891878/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)05](http://img-preview.51jiaoxi.com/2/3/13891878/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
通用版中考数学冲刺复习第四章三角形第18课三角形相似课件(带答案)
展开1.相似三角形的判定:(1)如图,若DE∥BC(A型和X型)则 △ADE∽__________.(2)两个角对应相等的两个三角形__________.(3)两边对应成__________且夹角________的两个三角形 相似.(4)三边对应成比例的两个三角形__________.
2.相似三角形的性质:(1)对应角________,对应边的比等于________, 周长的比等于________,面积的比等于__________ . (2)三条平行线截两条直线,所得对应线段 __________ .
【例1】如图,在△ABC中,CD是边AB上的高且CD2=AD·DB.(1)求证:△ACD∽△CBD;(2)求∠ACB的度数.
【考点1】相似三角形的判定与性质
证明:(1)∵CD是边AB上的高, ∴∠ADC=∠CDB=90°. ∵CD2=AD·DB, ∴ . ∴△ADC∽△CDB. (2)由(1),得△ADC∽△CDB,∴∠ACD=∠B. ∵∠B+∠DCB=90°, ∴∠ACD+∠DCB=90°,即∠ACB=90°.
【变式1】如图,D是△ABC的边AC上的一点, 连接BD,已知∠ABD=∠C,AB=6,AD=4, 求线段CD的长.
解:在△ABD和△ACB中, ∠ABD=∠C,∠A=∠A, ∴△ABD∽△ACB. ∴ . ∵AB=6,AD=4, ∴AC= . ∴CD=AC-AD=9-4=5.
【考点2】相似三角形的判定
【例2】如图,在矩形ABCD中,沿直线MN对折, 使A,C重合,直线MN交AC于点O. 求证:△COM∽△CBA.
证明:A与C关于直线MN对称,∴AC⊥MN,∴∠COM=90°.在矩形ABCD中,∠B=90°,∴∠COM=∠B.又∵∠ACB=∠ACB, ∴△COM∽△CBA .
【变式2】如图,四边形ABCD为平行四边形,以 CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的 切线DE与边AB相交于点E. 求证:△ADE∽△CDF.
证明:∵CD是⊙O的直径, ∴∠DFC=90°. ∵四边形ABCD是平行四边形, ∴∠A=∠C,AD∥BC. ∴∠ADF=∠DFC=90°, ∵DE为⊙O的切线,∴DE⊥DC. ∴∠EDC=90°. ∴∠ADF=∠EDC=90°. ∴∠ADE=∠CDF. ∵∠A=∠C, ∴△ADE∽△CDF.
1.如图,在△ABC中,DE∥BC, ,则△ADE与△ABC的面积之比为________.
3.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,求证:△ABC∽ADE.
2.如图,点P是▱ABCD的边AB上一点,射线CP交DA的延长线于点E,则图中相似的三角形有________对.
证明:∵∠C=90°DE⊥AB, ∴∠C=∠DEA, ∵∠A=∠A, ∴△ABC∽△ADE.
4.如图,AB∥FC,D是AB上一点,DF交AC于点E, DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.
证明:(1)∵ AB∥FC,∴∠ADE=∠CFE. 又∵∠AED=∠CEF,DE=FE, ∴ △ADE≌△CFE(ASA). (2)解:∵△ADE≌△CFE,∴ AD=CF. ∵ AB∥FC,∴∠GBD=∠GCF,∠GDB=∠GFC. ∴△ GBD∽△GCF. ∴ 又∵GB=2,BC=4,BD=1, 代入 , ,得CF=3=AD. ∴ AB=AD+BD=3+1=4.
5.如图,⊙O的半径为4,B是⊙O外一点,连接OB, 且OB=6,过点B作⊙O的切线BD,切点为D,延长BO交 ⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.
证明:(1)连接OD,∵BD是⊙O的切线,∴OD⊥BD. ∵AC⊥BD,∴OD∥AC. ∴∠DAC=∠ODA. ∵OA=OD,∴∠OAD=∠ODA. ∴∠OAD=∠DAC,即AD平分∠BAC. (2)解:∵OD∥AC, ∴△BOD∽△BAC. ∴ . ∴ . 解得AC= .
中考数学新导向复习第四章三角形第18课三角形相似课件(带答案): 这是一份中考数学新导向复习第四章三角形第18课三角形相似课件(带答案),共14页。PPT课件主要包含了考点知识,△ABC,相似比,相似比的平方,成比例,例题与变式,过关训练等内容,欢迎下载使用。
通用版中考数学冲刺复习第四章三角形第22课尺规作图课件(带答案): 这是一份通用版中考数学冲刺复习第四章三角形第22课尺规作图课件(带答案),共12页。PPT课件主要包含了考点知识,例题与变式,解作图略,过关训练等内容,欢迎下载使用。
通用版中考数学冲刺复习第四章三角形第21课几种重要的线段课件(带答案): 这是一份通用版中考数学冲刺复习第四章三角形第21课几种重要的线段课件(带答案),共13页。PPT课件主要包含了考点知识,例题与变式,过关训练,平行四边形等内容,欢迎下载使用。