|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版)
    立即下载
    加入资料篮
    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版)01
    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版)02
    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版)03
    还剩17页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版)

    展开
    这是一份2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题(解析版),共20页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省南京市六校联合体高二上学期12月联考数学试题

     

    一、单选题

    1.若复数满足,则的虚部为(    

    A1 B C D

    【答案】B

    【分析】根据已知条件,结合复数的四则运算,以及虚部的定义,即可求解.

    【详解】

    的虚部为-2.

    故选:

    2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为(    

    A6 B7 C8 D9

    【答案】C

    【分析】根据分层抽样的定义建立比例关系进行求解即可.

    【详解】设在高二年级的学生中应抽取的人数为,依题意可得,解得.

    故选:C.

    3.若,则的值等于(    

    A B C D

    【答案】D

    【分析】利用同角三角函数的基本关系及正弦二倍角公式,即可求得式子的值.

    【详解】因为,所以

    故选:.

    4.若数列为等比数列,且是方程的两根,则的值等于(    

    A B1 C D

    【答案】C

    【分析】由已知结合方程的根与系数关系及等比数列的性质即可求解.

    【详解】由题意得,,

    所以

    故选: .

    5.圆与圆的公切线的条数为(    

    A1 B2 C3 D4

    【答案】B

    【分析】首先判断两个圆的位置关系,从而判断出公切线的条数.

    【详解】的圆心为,半径

    的圆心为,半径

    圆心距

    所以两圆相交,公切线有.

    故选:B

    6.已知为双曲线的左焦点,直线过点与双曲线交于两点,且最小值为,则双曲线离心率取值范围为(    

    A B C D

    【答案】D

    【分析】分别讨论经过焦点的直线与双曲线的交点在同一支上和

    直线与双曲线的交点在两支上这两种情况,列出不等式,计算即可得到范围.

    【详解】当经过焦点的直线与双曲线的交点在同一支上,可得双曲线的通径最小,

    设双曲线的左焦点为,过的直线与双曲线左支相交于

    当直线斜率不存在时,直线的方程为可得,即有

    当直线斜率存在时,设直线的方程为

    联立,消去,得

    ,解得

    所以

    所以当直线轴垂直时,的长最小,即最小值为

    当直线与双曲线的交点在两支上,可得当直线的斜率为0, 最小为

    ①②及题意可得,即为,即有,则离心率.

    故选: .

    7.过抛物线的焦点作直线交抛物线于两点,且点在第一象限,则当时,直线的斜率为(    

    A B C D

    【答案】A

    【分析】首先设直线,把直线与抛物线联立,结合,找到关系式,计算即可得到斜率.

    【详解】由题意知,设直线:,

    联立方程,

    可得,即得

    又因为,可得,②

    结合①②,

    可得,

    因为,,又因所以

    即可得

    故选:.

    8.在矩形中,,动点在矩形所在平面内,且满足.,则的取值不可能为(    

    A B1 C2 D3

    【答案】D

    【分析】根据已知条件建系计算,结合向量运算和辅助角公式,计算范围即可

    【详解】根据矩形,,为坐标原点,,分别为,

    ,

    又因

    ,

    所以可取-1,1,2;又,所以的取值不可能为3.

    故选:.

     

    二、多选题

    9.在某市高二举行的一次期中考试中,某学科共有2000人参加考试.为了了解本次考试学生成绩情况,从中抽取了部分学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,样本容量为.按照的分组作出频率分布直方图,如图所示.其中,成绩落在区间内的人数为16.则下列结论正确的有(    

    A.样本容量

    B.图中

    C.估计该市全体学生成绩的平均分为

    D.该市要对成绩由高到低前的学生授予优秀学生称号,则成绩为78分的学生肯定能得到此称号

    【答案】BC

    【分析】根据频率,频数和样本容量之间的关系即可判断A;根据频率之和等于,即可判断B

    根据频率分布直方图平均数的求解方法即可判断C

    根据题意得,即可判断D.

    【详解】对于A:因为成绩落在区间内的人数为,所以样本容量,故A不正确;

    对于B:因为,解得,故B正确;

    对于C:学生成绩平均分为:,故C正确;

    对于D:因为

    即按照成绩由高到低前的学生中不含分的学生,所以成绩为分的学生不能得到此称号,故D不正确.

    故选: .

    10.已知正方体,动点在线段上,则下述正确的有(    

    A与平面所成角为

    B

    C.二面角的余弦值为

    D平面

    【答案】BCD

    【分析】A选项:根据三棱锥为正三棱锥,得到平面,即可得到与平面所成角,然后求角即可;

    B选项:根据正方体的性质得到,即可推出平面,同理得到,根据线面垂直的判定定理得到平面,最后根据线面垂直的性质即可得到

    C选项:根据得到为二面角的平面角,然后求二面角的余弦值即可;

    D选项:根据平面平面和面面平行的性质即可得到平面.

    【详解】

    A选项:设正方体边长为2,取中点,连接靠近的三等分点,根据题意可得,,所以三棱锥为正三棱锥,F为正三角形BC1D中心,所以 平面与平面所成角,,所以,所以与平面所成角不是,故A错;

    B选项:连接,因为为正方体,所以平面,因为平面,所以,因为平面,所以平面,因为平面,所以,同理可得,因为平面,所以平面,因为平面,所以,故B正确;

    C选项:连接,因为为等边三角形,中点,所以,平面平面,所以为二面角的平面角,又,所以,故C正确;

    D选项:因为为正方体,所以,又平面平面,所以平面平面,因为平面,所以平面平面,因为平面,所以平面,故D正确.

    故选:BCD.

    11.如图,此形状出现在南宋数学家杨辉所著的《详解九章算法.商功》中,后人称为三角垛”.“三角垛最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,.设第层有个球,从上往下层球的总数为,则(    

    A

    B

    C

    D

    【答案】ACD

    【分析】根据由累加法可得,进而结合选项可判断A.B.C,

    根据裂项相消法则可判断D.

    【详解】由题意得,

    以上个式子累加可得

    满足上式,所以

    由已知

    ,正确;

    因为,,错误;

    由通项公式得,正确;

    D正确.

    故选:.

    12.已知椭圆的左右焦点分别为,直线与椭圆交于两点,分别为椭圆的左右顶点,则下列命题正确的有(    

    A.若直线的斜率为,直线的斜率,则

    B.若有且仅有两个不同的实数使得为等腰直角三角形,则

    C取值范围为

    D周长的最大值为8

    【答案】BCD

    【分析】设出的坐标,根据斜率、等腰直角三角形、向量数量积、三角形的周长、椭圆的定义 知识对选项进行分析,从而确定正确答案.

    【详解】,不妨设轴的上方,

    A选项,,A选项错误.

    B选项,若等腰三角形中,,根据椭圆的对称性可知,

    只能是上下顶点,由,但只有一个值,不符合题意.

    ,则

    依题意,两边平方并化简得

    解得(负根舍去).

    时,同理可求得,此时.

    综上所述,若有且仅有两个不同的实数使得为等腰直角三角形,

    B选项正确.

    C选项,

    由于,所以

    ,所以取值范围为C选项正确.

    D选项,设直线轴相交于点,

    的周长为,

    其中,当且仅当重合时等号成立,

    所以的周长的最大值为D选项正确.

    故选:BCD

    【点睛】本小题是考查椭圆有关知识的多选题,每个选项都可以作为一个独立的小问.四个选项都涉及到的坐标,这是贯穿整个题目的.在研究斜率、向量数量积时,可利用坐标运算来进行求解,在求周长的最值时,可利用定义法去转化.

     

    三、填空题

    13.已知数列满足前项和,则通项公式为___________.

    【答案】

    【分析】利用当,;, ,即可得出.

    【详解】根据已知条件

    ,;

    ,

    综上,可得

    故答案为:

    14.若双曲线的左右焦点分别为为双曲线上一点,若,则的取值为___________.

    【答案】5

    【分析】根据双曲线的定义分点在左支上和右支上两种情况求即可.

    【详解】根据双曲线的定义可得

    ,所以点可以在左支上,此时,解得

    ,所以点不可能在右支上,

    综上可得.

    故答案为:5.

    15.在三棱锥中,,则三棱锥的外接球表面积为___________.

    【答案】

    【分析】根据外接球半径与底面外接圆半径,高度的关系计算即可.

    【详解】因为,由余弦定理得,

    由题由正弦定理得,外接圆直径为,得

    因为由勾股定理得

    又因为由勾股定理得,平面,

    平面,,所以平面

    设球心到平面的距离为

    所以

    所以三棱锥的外接球半径为

    则三棱锥的外接球表面积为

    故答案为:

    16.在平面直角坐标系中,过点的直线与圆交于两点,则四边形面积最大值为___________.

    【答案】##

    【分析】设直线的方程为,与圆的方程联立,设,由韦达定理表示,令,转化为求利用配方法求的最值可得答案.

    【详解】

    由题意直线的斜率不为

    设直线的方程为,与圆的方程联立

    ,设

    所以

    所以

    所以

    ,则,则

    有最大值

    所以有最大值,此时,即.

    故答案为:.

     

    四、解答题

    17的内角的对边分别为,已知.

    (1)

    (2)的面积为,求.

    【答案】(1)

    (2)

     

    【分析】1)根据已知条件及正弦定理边化角,利用两角和的正弦公式的逆用及三角形的内角和定理,结合三角函数的诱导公式及三角函数的特殊值对应的特殊角即可求解.

    2)根据(1)的结论及三角形的面积公式及余弦定理即可求解.

    【详解】1)由及正弦定理,得,即

    因为在中,,所以

    又因为

    所以,又

    所以.

    2)由(1)知,

    因为的面积为

    所以,即

    由余弦定理,又

    所以.

    18.江苏省高考目前实行“3+1+2”模式,其中“3”指的是语文、数学,外语这3门必选科目,“1”指的是考生需要在物理、历史这2门首选科目中选择1门,“2”指的是考生需要在思想政治、地理、化学、生物这4门再选科目中选择2.已知南京医科大学临床医学类招生选科要求是首选科目为物理,再选科目为化学、生物至少1.

    (1)从所有选科组合中任意选取1个,求该选科组合符合南京医科大学临床医学类招生选科要求的概率;

    (2)假设甲、乙、丙三人每人选择任意1个选科组合是等可能的,求这三人中至少有两人的选科组合符合南京医科大学临床医学类招生选科要求的概率.

    【答案】(1)

    (2)

     

    【分析】1)利用古典概型求概率的方法求概率即可;

    2)根据互斥事件概率加法公式求概率即可.

    【详解】1)用分别表示选择物理”“选择历史,用分别表示选择选择化学”“选择生物”“选择思想政治”“选择地理

    则所有选科组合的样本空间

    从所有选科组合中任意选取1个,该选科组合符合南京医科大学临床医学类招生选科要求

    .

    2)设甲、乙、丙三人每人的选科组合符合南京医科大学临床医学类招生选科要求的事件分别是,由题意知事件相互独立.

    由(1)知.

    甲、乙、丙三人中至少有两人的选科组合符合南京医科大学临床医学类招生选科要求

    易知以上子事件两两互斥,根据互斥事件概率加法公式得

    .

    19.如图,是矩形所在平面外一点,且平面平面分别是线段的中点.

    (1)求证:平面

    (2)求点到平面的距离.

    【答案】(1)证明见解析

    (2)

     

    【分析】(1)根据已知条件构造平行四边形证明线线平行,再根据线面平行判定定理可证.

    (2)根据面面垂直性质定理得出是三棱锥的高,利用已知条件求相关量,应用等体积法,计算即可求出

    【详解】1)取中点,连接

    中,因为分别是的中点,

    所以

    因为是矩形中点,

    所以;所以

    即四边形是平行四边形,所以

    又因为平面平面

    平面

    2)如图,设,连接

    因为中点,

    所以

    又平面平面,平面平面平面

    平面,即是三棱锥的高;

    由矩形,得所以

    因为,所以

    设点到平面的距离为,由(1)知点到平面的距离也为

    因为

    ,解得

    所以点到平面的距离为.

    20.已知数列满足,且,设.

    (1)求数列的通项公式;

    (2),且,设的前项和为,判断并证明的单调性.

    【答案】(1)

    (2)单调递增,证明见解析

     

    【分析】(1)首先构造等差数列,再应用等差数列通项公式即可求.

    (2)(1)结合得到的通项公式,应用错位相减法求得,再作差比较证明单调性即可.

    【详解】1)由,等式两边同除以

    ,即

    ,所以是以1为首项,2为公差的等差数列,

    .

    2单调递增,理由如下:

    ,又

    是以1为首项,为公比的等比数列,故

    又由(1)知

    作差得

    因为当

    所以单调递增.

    21.已知动圆过定点,且轴被圆所截得的弦长恒为4,直线.

    (1)求圆心的轨迹方程;

    (2)若直线过点且与的轨迹交于两点,求为坐标原点)的大小;

    (3)的轨迹上存在两点关于直线对称,求的取值范围.

    【答案】(1)

    (2)

    (3)

     

    【分析】1)根据已知条件及半径的定义,再利用两点的距离公式及点到线的距离公式,结合半径、弦长及弦心距的关系即可求解;

    2)根据已知条件求出直线方程,直线与抛物线联立方程组,利用韦达定理及数量积的坐标表示即可求解;

    3)根据已知条件设出直线的方程,直线与线联立方程组,利用韦达定理及判别式,结合中点坐标公式及点在直线上即可求解.

    【详解】1)设,圆的半径,圆心轴的距离

    由题意得,化简得.

    2)由题,设

    ,,则

    因为

    所以,即.

    3)设点的轨迹上关于对称的两点,点中点.则可设直线方程为

    ,应有,即

    此时,则

    由题点应在直线上,即,解得

    所以的取值范围为.

    22.设椭圆的左右焦点为,椭圆上顶点为,点为椭圆上任一点,且面积的最大值为,椭圆的离心率小于.

    (1)求椭圆的标准方程;

    (2)为坐标原点,问:是否存在过原点的直线,使得与椭圆在第三象限的交点为,与直线交于点,且满足.若存在,求出的方程,不存在请说明理由.

    【答案】(1)

    (2)存在,

     

    【分析】(1)由已知条件求出,写出椭圆标准方程即可.

    (2)先设直线方程,再由已知条件结合弦长公式分别求出,,

    代入计算即可.

    【详解】1)由题,解得

    因为,所以

    所以椭圆标准方程为

    2)假设存在直线满足题意,由题直线斜率,设直线

    由题直线方程为

    且由,可得

    由弦长公式可得

    同理

    由题,即

    故由,即

    所以直线方程为

     

    相关试卷

    江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题: 这是一份江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题,文件包含江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题教师版含解析docx、江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题学生版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题(学生版): 这是一份江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题(学生版),共5页。试卷主要包含了 已知集合,,则, 命题“,”的否定是, 函数定义域为, 设,,则=, 已知函数,则 的大致图象是, 下列命题中正确是等内容,欢迎下载使用。

    江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题(教师版含解析): 这是一份江苏省南京市六校联合体2022-2023学年高一上学期期中联考数学试题(教师版含解析),共16页。试卷主要包含了 已知集合,,则, 命题“,”的否定是, 函数的定义域为, 设,,则=, 已知函数,则 的大致图象是, 下列命题中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map