|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版)
    立即下载
    加入资料篮
    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版)01
    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版)02
    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版)03
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版)

    展开
    这是一份2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题(解析版),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题

    一、单选题
    1.若复数满足,则
    A. B. C. D.1
    【答案】D
    【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由复数模的计算公式求解.
    【详解】由(z+1)i=1+i,得z+1,
    ∴z=﹣i,则|z|=1.
    故选D.
    【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.
    2.已知集合,.若,求实数a的取值范围为(   )
    A. B.
    C. D.
    【答案】B
    【分析】根据对数函数解不等式得集合,由,得,即可求实数a的取值范围.
    【详解】解:,
    若,则,又,所以,则实数a的取值范围是.
    故选:B.
    3.已知λ为实数,则使命题“,”是假命题的一个充分不必要条件是(   )
    A. B.
    C. D.
    【答案】C
    【分析】先求得命题“,”是假命题的充要条件,再利用集合间的关系去选择其充分不必要条件即可解决.
    【详解】由命题“,”是假命题,
    可得,恒成立,则恒成立,
    又时,(当且仅当时等号成立)
    则,恒成立时,有
    则命题“,”是假命题的充要条件为
    则命题“,”是假命题的充分不必要条件
    为的真子集,选项中仅选项C符合要求
    故选:C
    4.若等边三角形的边长为1,点满足,则
    A. B.2 C. D.3
    【答案】D
    【分析】根据平行四边形法则画出图形找到点的位置,然后根据两个向量的数量积的定义进行计算.
    【详解】根据平行四边形法则画出如下图形,为平行四边形边的中点,
    由图可知:,




    故选:D.
    【点睛】本题主要考查向量数量积的定义运算,考查数形结合思想的运用,求解时要充分利用平面向量既有几何又有代数的双重身份,借助图形进行数量积运算,能使运算更有方向性.
    5.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”,如图在堑堵中,,且.下列说法错误的是(    )

    A.四棱锥为“阳马”
    B.四面体为“鳖臑”
    C.四棱锥体积最大为
    D.过A点分别作于点E,于点F,则
    【答案】C
    【分析】由新定义结合线面垂直的判定、性质、体积公式逐项判断即可得解.
    【详解】底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”.
    所以在堑堵中,,侧棱平面,
    在选项A中,因为,,且,则平面,
    且为矩形,所以四棱锥为“阳马”,故A正确;
    在选项B中,由,且,
    所以平面,所以,则为直角三角形,
    由平面,得,为直角三角形,
    由“堑堵”的定义可得为直角三角形,所以四面体为“鳖臑”,故B正确;
    在选项C中,在底面有,即,
    当且仅当时取等号,
    则,所以C不正确;
    在选项D中,由平面,则且,
    则平面,所以
    又且,则平面,则,所以D正确.
    故选:C.
    6.已知函数,若在区间上单调递减,则实数m的最小值是(   )
    A. B. C. D.
    【答案】B
    【分析】先利用三角恒等变换得到,根据得到,结合函数的单调区间,得到不等式,求出,得到答案.
    【详解】

    因为,所以,
    要想满足在区间上单调递减,则,
    解得:,故实数m的最小值是.
    故选:B
    7.抛物线的焦点为,过作斜率为的直线与抛物线在轴右侧的部分相交于点,过作抛物线准线的垂线,垂足为,则的面积是(   )
    A. B. C. D.
    【答案】C
    【分析】求出点的坐标,可得出点的坐标,分析可知是等边三角形,计算出其边长,利用三角形的面积公式可求得结果.
    【详解】如下图所示:

    易知抛物线的焦点为,准线方程为,直线的方程为,
    由可得,解得,可得点,
    由抛物线的定义可得,易知点,则,
    所以,是边长为的等边三角形,故.
    故选:C.
    8.艾萨克牛顿英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列.设,已知,,的前n项和为,则等于(   )
    A.2022 B.2023 C. D.
    【答案】D
    【分析】先由函数有两个零点求得和的解析式,进而求得数列的递推公式,从而得到数列的前n项和,即可求得的值.
    【详解】有两个零点1,2,
    则,解之得,
    则,则


    由,可得,
    故,又,则数列是首项为1公比为2的等比数列
    则通项公式,前n项和

    故选:D
    【点睛】递推数列通项公式是一类考查思维能力的题型,要求我们进行严格的逻辑推理找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的.主要方法有累加法,累乘法,取倒数法,换元法,构造法等

    二、多选题
    9.已知函数对都有,若函数的图象关于直线对称,且对,,当时,都有,则下列结论正确的是(   )
    A. B.是偶函数
    C.是周期为4的周期函数 D.
    【答案】ABC
    【分析】由的图象关于直线对称,得到关于轴对称,赋值后得到,进而得到,判断出ABC均正确;
    根据,,当时,都有,得到在上单调递增,结合函数的周期及奇偶性得到,,判断出.
    【详解】的图象关于直线对称,故关于轴对称,是偶函数,B正确;
    中,令得:,
    因为,所以,解得:,A正确;
    故,是周期为4的周期函数,C正确;
    对,,当时,都有,
    故在上单调递增,又是周期为4的周期函数,且是偶函数,
    故,,
    因为,
    所以,D错误.
    故选:ABC
    10.下列结论中,正确的结论有(   )
    A.若,,则
    B.如果,那么取得最大值时x的值为1
    C.已知,则
    D.若,,,则的最小值是8
    【答案】AD
    【分析】对A,根据作差法判断即可;对B,根据二次函数的最值判断即可;对C,举反例判断即可;对D,根据基本不等式,结合判断即可.
    【详解】对A,,故成立,故A正确;
    对B,,故当取得最大值时的值为,故B错误;
    对C,当时,满足,此时,,不满足,故C错误;
    对D,若则,因为,,故,即,解得,当且仅当,即时取等号,故D正确;
    故选:AD
    11.如图,平面四边形中,是等边三角形,且,是的中点.沿将翻折,折成三棱锥,在翻折过程中,下列结论正确的是(   )

    A.棱上总会有一点,使得平面
    B.存在某个位置,使得与所成角为锐角
    C.一定是二面角的平面角
    D.当平面平面时,三棱锥的外接球的表面积是
    【答案】AD
    【分析】(1)利用线面平行的判定定理即可判断说明A选项;(2)证明线面垂直即可得到线线垂直,即可判断B选项;(3)根据二面角的平面角的定义说明C选项;(4)利用几何体的特征找到外接球的球心,并根据几何关系确定半径即可求解D选项.
    【详解】对于A,
    取中点,连接,如图,
    在中,,平面,平面,
    所以平面,故A正确;
    对于B,
    取中点,连接,
    因为是等边三角形,所以,
    又因为,在中,,所以,
    又因为,平面,
    所以平面,
    又平面,所以,故B错误;
    对于C,翻折过程中,长度不变,但长度会随着翻折程度不同而不同,
    所以不一定垂直于,所以一定是二面角的平面角,
    故C错误;
    对于D,因为为直角三角形,
    所以过作平面,
    设为三棱锥外接球的球心,
    因为平面平面,平面平面,
    且,平面,
    所以平面,所以,
    过作交于点,如图所示,

    所以四边形为矩形,

    在直角中,即
    在直角中,即
    解得,所以三棱锥的外接球的表面积是.
    故D正确.
    故选:AD.
    12.在平面直角坐标系中,已知点,动点满足(),记点P的轨迹为曲线C,则(    )
    A.存在实数,使得曲线上所有的点到点的距离大于2
    B.存在实数,使得曲线上有两点到点与的距离之和为6
    C.存在实数,使得曲线上有两点到点与的距离之差为2
    D.存在实数,使得曲线上有两点到点的距离与到直线的距离相等
    【答案】BD
    【分析】先求出C的方程,然后求出选项A,B,C,D给定条件对应的轨迹方程,最后探讨它们的关系而得解.
    【详解】设点P(x,y),由得,即,曲线C是斜率为2的动直线,
    对于A选项:点到直线C的距离为,即曲线C上存在点与距离小于2,A错误;
    对于B选项:因,则到点与的距离之和为6的轨迹是中心在原点,长轴长为6的椭圆,
    a=0时,直线C:y=2x与这个椭圆有两个交点,即B正确;
    对于C选项:因,则到点与的距离之差为2的轨迹是中心在原点,实轴长为2的双曲线右支,
    直线C:与此双曲线渐近线2x-y=0平行,直线C:y=2x与这个双曲线右支最多有一个公共点,即C错误;
    对于D选项:时,到点的距离与到直线的距离相等的点的轨迹是顶点在原点,焦点在x轴上的抛物线,
    由消去x得,,当,直线C与抛物线交于两点,D正确.
    故选:BD
    【点睛】关键点睛:圆锥曲线定义是研究曲线形状、求曲线方程的关键.

    三、填空题
    13.若点为圆的弦的中点,则弦所在直线方程为________.
    【答案】
    【详解】试题分析:因为 为圆的弦的中点,所以圆心坐标为,,所在直线方程为,化简为,故答案为.
    【解析】1、两直线垂直斜率的关系;2、点斜式求直线方程.
    14.若等差数列的公差为,是与的等比中项,则该数列的前n项和取得最大值时,n的值为_______.
    【答案】6
    【分析】根据是与的等比中项列出方程,求出首项,从而求出通项公式,列出不等式,求出时,,时,,结合,求出答案.
    【详解】由题意得:,即,
    解得:,故,
    令,解得:,令,解得:,
    又因为,故当时,取得最大值.
    故答案为:6
    15.已知函数,若方程有两个不相等的实数根,则实数的取值范围是______________.
    【答案】
    【分析】对函数求导,求出函数的单调性,并作出函数的草图,结合图形即可求解.
    【详解】因为函数,
    则,
    令,解得:;令,解得:或,
    所以函数在和上单调递减,在上单调递增,
    所以当时,函数取最小值,
    当时,函数取极大值时函数值为正,
    作出函数的草图,

    如图,要使方程有两个不相等的实数根,则有或,
    故答案为:.
    16.已知双曲线C:的左、右焦点分别为,,是上的一点,且满足,,则双曲线的离心率为______.
    【答案】
    【分析】设,得到,在中,由余弦定理求得,再根据,化简求得,代入上式,结合离心率的定义,即可求解.
    【详解】如图所示,

    点,所以,
    设,则,
    因为,,可得,
    在中,由余弦定理可得,
    即,即,
    在中,根据余弦定理得,
    即,
    在中,根据余弦定理得,
    即,
    因为,
    所以,解得,
    又因为在中,,
    所以,
    即,即,
    即,
    所以,可得,即,
    将代入,可得,即,
    可得.
    故答案为: .
    【点睛】求解椭圆或双曲线的离心率的三种方法:
    1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;
    2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;
    3、特殊值法:通过取特殊值或特殊位置,求出离心率.

    四、解答题
    17.已知的内角A,B,C的对边分别为a,b,c,且向量与向量共线.
    (1)求B;
    (2)若,的面积为,判断的形状,并说明理由.
    【答案】(1)
    (2)为正三角形,理由见解析

    【分析】(1)由平面向量共线向量的坐标运算得,结合正弦定理可得,即可得角;
    (2)根据三角形面积公式结合余弦定理可求边,从而可判断三角形形状.
    【详解】(1)解:∵向量与向量共线,
    ∴,由正弦定理得:,
    ∴,
    ∵,则,∴,
    ∵,∴;
    (2)解:由已知,
    所以
    由余弦定理得,
    所以
    解得或(舍)
    又因为,所以为正三角形.
    18.数列的前n项和满足.
    (1)求数列的通项公式;
    (2)若数列为等差数列,且,,求数列的前n项.
    【答案】(1)
    (2)

    【分析】(1)根据与的关系,采用相减法求数列的通项公式即可;
    (2)根据数列为等差数列,结合已知求解,利用组求和、错位相减法即可求数列的前n项.
    【详解】(1)解:当时,,所以,
    因为①,
    所以当时,②,
    ①-②得,
    所以,
    所以,
    所以是首项为2,公比为2的等比数列,
    所以,
    所以;
    (2)解:由(1)知,,,
    所以,,
    设的公差为d,则,所以,
    所以,
    所以,
    设数列的前n项和为,
    所以③,
    ④,
    ③-④得

    所以,
    又因为数列的前n项和等于,
    所以的前n项和为.
    19.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,,,.

    (1)求证:平面MQB⊥平面PAD;
    (2)若二面角M-BQ-C的大小为60°,求QM的长.
    【答案】(1)证明见解析
    (2)

    【分析】(1)先证明四边形BCDQ为平行四边形,进而得到QB⊥AD,再根据面面垂直的性质可得BQ⊥平面PAD,再根据面面垂直的判定证明即可;
    (2)以Q为原点建立空间直角坐标系,设,利用二面角的向量求法可得,再根据空间向量的模长公式求解QM的长即可.
    【详解】(1)证明:∵ADBC,,Q为AD的中点,
    ∴四边形BCDQ为平行四边形,
    ∴CDBQ
    ∵∠ADC=90°,
    ∴∠AQB=90°,即QB⊥AD,
    又∵平面PAD⊥平面ABCD,平面平面ABCD=AD,
    平面,∴BQ⊥平面PAD,
    ∵平面MQB,
    ∴平面MQB⊥平面PAD;
    (2)∵PA=PD,Q为AD的中点,
    ∴PQ⊥AD,
    ∵平面PAD⊥平面ABCD,且平面平面ABCD=AD,
    ∴PQ⊥平面ABCD,
    如图,以Q为原点建立空间直角坐标系,

    则,,,,,
    设,且0≤λ≤1,得,
    所以,,
    设平面MBQ法向量为,
    由,得,
    令,则,
    由题意知平面BQC的一个法向量为,
    ∵二面角M-BQ-C为60°,
    ∴,即,,解得,
    ∴,则,
    ∴.
    20.疫情期间,为保障学生安全,要对学校进行消毒处理.校园内某区域由矩形与扇形组成,,,.消毒装备的喷射角,阴影部分为可消毒范围,要求点在弧上,点在线段上,设,可消毒范围的面积为.

    (1)求消毒面积关于的关系式,并求出的范围;
    (2)当消毒面积最大时,求的值.
    【答案】(1),
    (2)

    【分析】(1)求出扇形和梯形的面积,可求得关于的关系式,求出的取值范围,可求得的范围;
    (2)根据(1)中的函数关系式,利用导数法可求得取最大值时,对应的的值.
    【详解】(1)解:由题意可知,则扇形的面积为,
    ,则,且,
    所以, 梯形的面积为,
    ,且,则,故,
    所以,,.
    (2)解:设,,
    ,且,
    记为锐角,且,
    当时,,此时函数单调递减,
    当时,,此时函数单调递增,
    所以,当时,,即时,取最小值,此时取最大值.
    21.已知椭圆的左右焦点分别为,其焦距为,点在椭圆上,,直线的斜率为(为半焦距)·
    (1)求椭圆的方程;
    (2)设圆的切线交椭圆于两点(为坐标原点),求证:;
    (3)在(2)的条件下,求的最大值
    【答案】(1);(2)见解析;(3)
    【分析】(1)由题意知 ,,解得 即可.
    (2)(i)当切线与坐标轴垂直时,满足,(ii)当切线与坐标轴不垂直时,设圆的切线为y=kx+m,得,A(x1,y1),B(x2,y2),利用,即可证明.
    (3 )当切线与坐标轴垂直时|OA|•|OB|=4,当切线与坐标轴不垂直时,由(2)知,且,即可得OA||OB|的最大值.
    【详解】(1)连接,由题意知 ,


    即 解得 ,
    椭圆的方程为 .       
    (2)(i)当切线与坐标轴垂直时,交点坐标为,满足.
    (ii)当切线与坐标轴不垂直时,设切线为
    由圆心到直线距离为
    联立椭圆方程得 恒成立,设


    满足 .       
    (3 )当切线与坐标轴垂直时
    当切线与坐标轴不垂直时,由(2)知
    .

    当且仅当时等号成立,
    综上所述,的最大值为
    【点睛】本题考查了求椭圆的方程,直线与圆相切的性质,也考查了直线与椭圆的位置关系,计算能力,属于中档题.
    22.已知函数.
    (1)讨论函数的单调性;
    (2)设函数有两个极值点,证明:.
    【答案】(1)答案见解析
    (2)证明见解析

    【分析】(1)先求出定义域,再求导,根据确定或,再对进行分类讨论,讨论求出函数的单调性;
    (2)对求导,结合的极值点个数得到在上有两个不等实根,得到,,,表达出,只需证,构造,,研究其单调性,求出,由对勾函数的单调性证明出结论.
    【详解】(1)定义域为,且

    令得,或,
    ①当时,与,,单调递增,
    ,,单调递减,
    ②当时,,在单调递增,
    ③当时,与,,单调递增,
    ,,单调递减,
    综上,当时,在区间,上单调递增,在区间上单调递减;
    当时,在区间上单调递增;
    当时,在区间,上单调递增,在区间单调递减;
    (2)由已知,,则,
    函数有两个极值点,,即在上有两个不等实根,
    令,只需,故,
    又,,
    所以

    要证,即证,
    只需证,
    令,,
    则,
    令,则恒成立,
    所以在上单调递减,
    又,,
    由零点存在性定理得,使得,
    即,
    所以时,,单调递增,
    时,,单调递减,
    则,
    ∵由对勾函数知在上单调递增,
    ∴,
    ∴,即,得证.
    【点睛】隐零点的处理思路:
    第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;
    第二步:虚设零点并确定取范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.

    相关试卷

    2024届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题含答案: 这是一份2024届福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题含答案,共20页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考试题数学含解析: 这是一份2024福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考试题数学含解析,共28页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题PDF版含答案: 这是一份2022-2023学年福建省德化一中、永安一中、漳平一中三校协作高三上学期12月联考数学试题PDF版含答案,文件包含三校联考高三数学试卷参考答案定稿16k版pdf、福建省德化一中永安一中漳平一中三校协作2022-2023学年高三上学期12月联考数学试题pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map