重难点11 三角函数的图像与性质—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)
展开
重难点11 三角函数的图像与性质
1.三角函数定义域的求法
①以正切函数为例,应用正切函数y=tan x的定义域求函数y=Atan(ωx+φ)的定义域.
②求复杂函数的定义域转化为求解简单的三角不等式.
(2)简单三角不等式的解法
①利用三角函数线求解.
②利用三角函数的图象求解.
2.求解三角函数的值域(最值)常见到以下几种类型:
(1)形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值);
(2)形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t的二次函数求值域(最值);
(3)形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,化为关于t的二次函数求值域(最值).
3.函数y=Asin(ωx+φ)(A>0,ω>0)的图象的两种作法
五点法 | 设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象 |
图象变 换法 | 由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移” |
[注意] 平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是ωx加减多少值.
4.确定y=Asin(ωx+φ)+b(A>0,ω>0)的步骤和方法
(1)求A,b,确定函数的最大值M和最小值m,
则A=,b=.
(2)求ω,确定函数的最小正周期T,则可得ω=.
(3)求φ,常用的方法有:
①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b的交点求解(此时要注意交点在上升区间上还是在下降区间上);
②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:
“最大值点”(即图象的“峰点”)时ωx+φ =+2kπ(k∈Z);“最小值点”(即图象的“谷点”)时ωx+φ=+2kπ(k∈Z).
2023年高考仍将重点考查三角函数的图像与性质及三角函数变换,特别是这些知识点的组合考查是考查的热点,题型仍为选择题或填空题,难度可以为基础题或中档题,也可以是压轴题.
(建议用时:40分钟)
一、单选题
1.为了得到函数的图象,只要把函数图象上所有的点( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
【答案】D
【解析】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象.
故选:D.
2.函数的最小正周期是( )
A. B. C. D.
【答案】C
【解析】(其中),
.
故选:C.
3.函数是
A.奇函数,且最大值为2 B.偶函数,且最大值为2
C.奇函数,且最大值为 D.偶函数,且最大值为
【答案】D
【解析】由题意,,所以该函数为偶函数,
又,
所以当时,取最大值.
故选:D.
4.函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是( )
A.[﹣π,﹣] B.[﹣,﹣] C.[﹣,0] D.[﹣,0]
【答案】D
【解析】由题意得,f(x)=sinx﹣cosx=,
令
解得
所以当k=0时,在上的单调区间为
∴f(x)单调递增区间是,
故选:D.
5.将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是( )
A. B. C. D.
【答案】C
【解析】由题意知:曲线为,又关于轴对称,则,
解得,又,故当时,的最小值为.
故选:C.
6.为得到函数的图象,只需将的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
【答案】A
【解析】,
所以只需将的图象向左平移个单位即可.
故选:A.
7.下列函数中,图象的一部分如图所示的是( )
A. B. C. D.
【答案】D
【解析】由题意,设,
由图象知:,所以,所以,
因为点在图象上,所以,则,
解得,所以函数为,
即,
故选:D
8.设函数在区间恰有三个极值点、两个零点,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】依题意可得,因为,所以,
要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:
则,解得,即.
故选:C.
9.将函数的图象向右平移个单位长度,所得图象对应的函数
A.在区间上单调递增 B.在区间上单调递减
C.在区间上单调递增 D.在区间上单调递减
【答案】A
【解析】由函数图象平移变换的性质可知:
将的图象向右平移个单位长度之后的解析式为:
.
则函数的单调递增区间满足:,
即,
令可得一个单调递增区间为:.
函数的单调递减区间满足:,
即,
令可得一个单调递减区间为:,本题选择A选项.
10.下列函数中,以为周期且在区间(,)单调递增的是
A.f(x)=│cos 2x│ B.f(x)=│sin 2x│
C.f(x)=cos│x│ D.f(x)= sin│x│
【答案】A
【解析】因为图象如下图,知其不是周期函数,排除D;因为,周期为,排除C,作出图象,由图象知,其周期为,在区间单调递增,A正确;作出的图象,由图象知,其周期为,在区间单调递减,排除B,故选A.
11.设函数f(x)=cos(x+),则下列结论错误的是
A.f(x)的一个周期为−2π B.f(x)的图像关于直线x=对称
C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减
【答案】D
【解析】f(x)的最小正周期为2π,易知A正确;
f=cos=cos3π=-1,为f(x)的最小值,故B正确;
∵f(x+π)=cos=-cos,∴f=-cos=-cos=0,故C正确;
由于f=cos=cosπ=-1,为f(x)的最小值,故f(x)在上不单调,故D错误.
故选D.
12.已知,关于该函数有下列四个说法:
①的最小正周期为;
②在上单调递增;
③当时,的取值范围为;
④的图象可由的图象向左平移个单位长度得到.
以上四个说法中,正确的个数为( )
A. B. C. D.
【答案】A
【解析】因为,所以的最小正周期为,①不正确;
令,而在上递增,所以在上单调递增,②正确;因为,,所以,③不正确;
由于,所以的图象可由的图象向右平移个单位长度得到,④不正确.
故选:A.
二、填空题
13.记函数的最小正周期为T,若,为的零点,则的最小值为____________.
【答案】
【解析】 因为,(,)
所以最小正周期,因为,
又,所以,即,
又为的零点,所以,解得,
因为,所以当时;
故答案为:
14.函数在区间上的最小值为__________.
【答案】1
【解析】,,
所以,所以,
的最小值为1.
故答案为:1.
15.已知函数的部分图像如图所示,则_______________.
【答案】
【解析】由题意可得:,
当时,,
令可得:,
据此有:.
故答案为:.
16.关于函数f(x)=有如下四个命题:
①f(x)的图象关于y轴对称.
②f(x)的图象关于原点对称.
③f(x)的图象关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
【答案】②③
【解析】对于命题①,,,则,
所以,函数的图象不关于轴对称,命题①错误;
对于命题②,函数的定义域为,定义域关于原点对称,
,
所以,函数的图象关于原点对称,命题②正确;
对于命题③,,
,则,
所以,函数的图象关于直线对称,命题③正确;
对于命题④,当时,,则,
命题④错误.
故答案为:②③.
三、解答题
17.已知函数.
(1)求函数的最小正周期和严格增区间;
(2)函数图像可以由函数的图象经过怎样的变换得到?
【答案】(1),;(2)左移,上移.
【解析】(1)
,
最小正周期,
,
解得,
所以函数严格增区间为.
(2)的图象向左平移个单位可得
,
再向上平移可得.
18.设函数,其中.已知.
(1)求;
(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.
【答案】(1) .(2) .
【解析】(1)因为,
所以
由题设知,所以,.
故,,又,所以.
(2)由(1)得
所以.
因为,所以,当,
即时,取得最小值.
重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共3页。试卷主要包含了公式法,几种数列求和的常用方法,已知数列的前n项和满足,若数列的通项公式是,则,数列{an}满足的前60项和为等内容,欢迎下载使用。
重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共10页。试卷主要包含了双曲线的焦点到渐近线的距离为b,焦点三角形的面积等内容,欢迎下载使用。
重难点24 直线与圆—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点24 直线与圆—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共13页。试卷主要包含了斜率取值范围的两种求法,求直线方程的两种方法,处理直线方程综合应用的两大策略,弦长的两种求法,圆的切线方程的两种求法等内容,欢迎下载使用。