五年2018-2022高考数学真题按知识点分类汇编9-平面向量(含解析)
展开五年2018-2022高考数学真题按知识点分类汇编9-平面向量(含解析)
一、单选题
1.(2022·全国·统考高考真题)在中,点D在边AB上,.记,则( )
A. B. C. D.
2.(2022·全国·统考高考真题)已知向量满足,则( )
A. B. C.1 D.2
3.(2022·全国·统考高考真题)已知向量,若,则( )
A. B. C.5 D.6
4.(2022·全国·统考高考真题)已知向量,则( )
A.2 B.3 C.4 D.5
5.(2022·北京·统考高考真题)在中,.P为所在平面内的动点,且,则的取值范围是( )
A. B. C. D.
6.(2021·浙江·统考高考真题)已知非零向量,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
7.(2020·全国·统考高考真题)已知向量 ,满足, ,,则( )
A. B. C. D.
8.(2020·全国·统考高考真题)已知单位向量,的夹角为60°,则在下列向量中,与垂直的是( )
A. B. C. D.
9.(2020·海南·统考高考真题)已知P是边长为2的正六边形ABCDEF内的一点,则 的取值范围是( )
A. B.
C. D.
10.(2020·海南·高考真题)在中,D是AB边上的中点,则=( )
A. B. C. D.
11.(2020·山东·统考高考真题)已知平行四边形,点,分别是,的中点(如图所示),设,,则等于( )
A. B. C. D.
12.(2020·山东·统考高考真题)已知点,,点在函数图象的对称轴上,若,则点的坐标是( )
A.或 B.或
C.或 D.或
13.(2019·全国·高考真题)已知非零向量满足,且,则与的夹角为
A. B. C. D.
14.(2018·全国·高考真题)在△中,为边上的中线,为的中点,则
A. B.
C. D.
15.(2019·全国·高考真题)已知=(2,3),=(3,t),=1,则=
A.-3 B.-2
C.2 D.3
16.(2018·全国·高考真题)已知向量满足,,则
A.4 B.3 C.2 D.0
17.(2019·全国·高考真题)已知向量,则
A. B.2
C.5 D.50
18.(2018·北京·高考真题)设向量均为单位向量,则“”是“”的
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件
19.(2018·天津·高考真题)如图,在平面四边形ABCD中,
若点E为边CD上的动点,则的最小值为
A. B. C. D.
二、多选题
20.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
21.(2021·全国·统考高考真题)已知为坐标原点,点,,,,则( )
A. B.
C. D.
三、填空题
22.(2022·全国·统考高考真题)设向量,的夹角的余弦值为,且,,则_________.
23.(2022·全国·统考高考真题)已知向量.若,则______________.
24.(2022·浙江·统考高考真题)设点P在单位圆的内接正八边形的边上,则的取值范围是_______.
25.(2021·全国·统考高考真题)已知向量,若,则__________.
26.(2021·全国·统考高考真题)已知向量.若,则________.
27.(2021·全国·统考高考真题)已知向量,,,_______.
28.(2021·全国·高考真题)若向量满足,则_________.
29.(2021·全国·统考高考真题)已知向量,若,则_________.
30.(2021·浙江·统考高考真题)已知平面向量满足.记向量在方向上的投影分别为x,y,在方向上的投影为z,则的最小值为___________.
31.(2020·全国·统考高考真题)设为单位向量,且,则______________.
32.(2020·全国·统考高考真题)已知单位向量,的夹角为45°,与垂直,则k=__________.
33.(2020·全国·统考高考真题)设向量,若,则______________.
34.(2020·江苏·统考高考真题)在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是________.
35.(2020·浙江·统考高考真题)设,为单位向量,满足,,,设,的夹角为,则的最小值为_______.
36.(2019·全国·统考高考真题)已知为单位向量,且=0,若 ,则___________.
37.(2018·全国·高考真题)已知向量,,.若,则________.
38.(2019·全国·高考真题)已知向量,则___________.
39.(2019·天津·高考真题) 在四边形中,, , , ,点在线段的延长线上,且,则__________.
四、解答题
40.(2020·山东·统考高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.
(1)求抛物线的标准方程;
(2)若过点的直线与抛物线交于,两点,且,求直线的方程.
五、双空题
41.(2022·天津·统考高考真题)在中,,D是AC中点,,试用表示为___________,若,则的最大值为____________
42.(2021·天津·统考高考真题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为____________;的最小值为____________.
43.(2021·北京·统考高考真题)已知向量在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则
________;________.
44.(2020·天津·统考高考真题)如图,在四边形中,,,且,则实数的值为_________,若是线段上的动点,且,则的最小值为_________.
45.(2020·北京·统考高考真题)已知正方形的边长为2,点P满足,则_________;_________.
参考答案:
1.B
【分析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
2.C
【分析】根据给定模长,利用向量的数量积运算求解即可.
【详解】解:∵,
又∵
∴9,
∴
故选:C.
3.C
【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
【详解】解:,,即,解得,
故选:C
4.D
【分析】先求得,然后求得.
【详解】因为,所以.
故选:D
5.D
【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则,,,
因为,所以在以为圆心,为半径的圆上运动,
设,,
所以,,
所以
,其中,,
因为,所以,即;
故选:D
6.B
【分析】考虑两者之间的推出关系后可得两者之间的条件关系.
【详解】如图所示,,当时,与垂直,,所以成立,此时,
∴不是的充分条件,
当时,,∴,∴成立,
∴是的必要条件,
综上,“”是“”的必要不充分条件
故选:B.
7.D
【分析】计算出、的值,利用平面向量数量积可计算出的值.
【详解】,,,.
,
因此,.
故选:D.
【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
8.D
【分析】根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.
【详解】由已知可得:.
A:因为,所以本选项不符合题意;
B:因为,所以本选项不符合题意;
C:因为,所以本选项不符合题意;
D:因为,所以本选项符合题意.
故选:D.
【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量互相垂直这一性质,考查了数学运算能力.
9.A
【分析】首先根据题中所给的条件,结合正六边形的特征,得到在方向上的投影的取值范围是,利用向量数量积的定义式,求得结果.
【详解】
的模为2,根据正六边形的特征,
可以得到在方向上的投影的取值范围是,
结合向量数量积的定义式,
可知等于的模与在方向上的投影的乘积,
所以的取值范围是,
故选:A.
【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.
10.C
【分析】根据向量的加减法运算法则算出即可.
【详解】
故选:C
【点睛】本题考查的是向量的加减法,较简单.
11.A
【分析】利用向量的线性运算,即可得到答案;
【详解】连结,则为的中位线,
,
故选:A
12.C
【分析】由二次函数对称轴设出点坐标,再由向量垂直的坐标表示计算可得.
【详解】由题意函数图象的对称轴是,设,
因为,所以,解得或,所以或,
故选:C.
13.B
【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.
【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.
【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.
14.A
【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.
【详解】根据向量的运算法则,可得
,
所以,故选A.
【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.
15.C
【分析】根据向量三角形法则求出t,再求出向量的数量积.
【详解】由,,得,则,.故选C.
【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.
16.B
【详解】分析:根据向量模的性质以及向量乘法得结果.
详解:因为
所以选B.
点睛:向量加减乘:
17.A
【分析】本题先计算,再根据模的概念求出.
【详解】由已知,,
所以,
故选A
【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.
18.C
【分析】根据向量数量积的应用,结合充分条件和必要条件的定义进行判断即可.
【详解】因为向量均为单位向量
所以
所以“”是“”的充要条件
故选:C
【点睛】本题考查的是向量数量积的应用和充要条件的判断,属于基础题.
19.A
【详解】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。
详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设
=
所以当时,上式取最小值 ,选A.
点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。
20.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
21.AC
【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.
【详解】A:,,所以,,故,正确;
B:,,所以,同理,故不一定相等,错误;
C:由题意得:,,正确;
D:由题意得:,
,故一般来说故错误;
故选:AC
22.
【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得.
【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,
又,,所以,
所以.
故答案为:.
23.##
【分析】直接由向量垂直的坐标表示求解即可.
【详解】由题意知:,解得.
故答案为:.
24.
【分析】根据正八边形的结构特征,分别以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,即可求出各顶点的坐标,设,再根据平面向量模的坐标计算公式即可得到,然后利用即可解出.
【详解】以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如图所示:
则,,设,于是,
因为,所以,故的取值范围是.
故答案为:.
25.
【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.
【详解】因为,所以由可得,
,解得.
故答案为:.
【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设,
,注意与平面向量平行的坐标表示区分.
26..
【分析】利用向量的坐标运算法则求得向量的坐标,利用向量的数量积为零求得的值
【详解】,
,解得,
故答案为:.
【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量垂直的充分必要条件是其数量积.
27.
【分析】由已知可得,展开化简后可得结果.
【详解】由已知可得,
因此,.
故答案为:.
28.
【分析】根据题目条件,利用模的平方可以得出答案
【详解】∵
∴
∴.
故答案为:.
29.
【分析】利用向量平行的充分必要条件得到关于的方程,解方程即可求得实数的值.
【详解】由题意结合向量平行的充分必要条件可得:,
解方程可得:.
故答案为:.
30.
【分析】设,由平面向量的知识可得,再结合柯西不等式即可得解.
【详解】由题意,设,
则,即,
又向量在方向上的投影分别为x,y,所以,
所以在方向上的投影,
即,
所以,
当且仅当即时,等号成立,
所以的最小值为.
故答案为:.
【点睛】关键点点睛:
解决本题的关键是由平面向量的知识转化出之间的等量关系,再结合柯西不等式变形即可求得最小值.
31.
【分析】整理已知可得:,再利用为单位向量即可求得,对变形可得:,问题得解.
【详解】因为为单位向量,所以
所以
解得:
所以
故答案为:
【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.
32.
【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k的值.
【详解】由题意可得:,
由向量垂直的充分必要条件可得:,
即:,解得:.
故答案为:.
【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.
33.5
【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.
【详解】由可得,
又因为,
所以,
即,
故答案为:5.
【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.
34.或0
【分析】根据题设条件可设,结合与三点共线,可求得,再根据勾股定理求出,然后根据余弦定理即可求解.
【详解】∵三点共线,
∴可设,
∵,
∴,即,
若且,则三点共线,
∴,即,
∵,∴,
∵,,,
∴,
设,,则,.
∴根据余弦定理可得,,
∵,
∴,解得,
∴的长度为.
当时, ,重合,此时的长度为,
当时,,重合,此时,不合题意,舍去.
故答案为:0或.
【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出.
35.
【分析】利用向量模的平方等于向量的平方化简条件得,再根据向量夹角公式求函数关系式,根据函数单调性求最值.
【详解】,
,
,
.
故答案为:.
【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.
36..
【分析】根据结合向量夹角公式求出,进一步求出结果.
【详解】因为,,
所以,
,所以,
所以 .
【点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.
37.
【分析】由两向量共线的坐标关系计算即可.
【详解】由题可得
,即
故答案为
【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.
38.
【分析】根据向量夹角公式可求出结果.
【详解】.
【点睛】本题考查了向量夹角的运算,牢记平面向量的夹角公式是破解问题的关键.
39..
【分析】建立坐标系利用向量的坐标运算分别写出向量而求解.
【详解】建立如图所示的直角坐标系,则,.
因为∥,,所以,
因为,所以,
所以直线的斜率为,其方程为,
直线的斜率为,其方程为.
由得,,
所以.
所以.
【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.
40.(1);(2).
【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线的方程为,与抛物线方程联立,并利用韦达定理表示,并利用,求直线的斜率,验证后,即可得到直线方程.
【详解】解:(1)由椭圆可知,,
所以,,则,
因为抛物线的焦点为,可设抛物线方程为,
所以,即.
所以抛物线的标准方程为.
(2)由椭圆可知,,
若直线无斜率,则其方程为,经检验,不符合要求.
所以直线的斜率存在,设为,直线过点,
则直线的方程为,
设点,,
联立方程组,
消去,得.①
因为直线与抛物线有两个交点,
所以,即,
解得,且.
由①可知,
所以,
则,
因为,且,
所以,
解得或,
因为,且,
所以不符合题意,舍去,
所以直线的方程为,
即.
41.
【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
【详解】方法一:
,,
,当且仅当时取等号,而,所以.
故答案为:;.
方法二:如图所示,建立坐标系:
,,
,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
故答案为:;.
42. 1
【分析】设,由可求出;将化为关于的关系式即可求出最值.
【详解】设,,为边长为1的等边三角形,,
,
,为边长为的等边三角形,,
,
,
,
所以当时,的最小值为.
故答案为:1;.
43. 0 3
【分析】根据坐标求出,再根据数量积的坐标运算直接计算即可.
【详解】以交点为坐标原点,建立直角坐标系如图所示:
则,
,,
.
故答案为:0;3.
44.
【分析】可得,利用平面向量数量积的定义求得的值,然后以点为坐标原点,所在直线为轴建立平面直角坐标系,设点,则点(其中),得出关于的函数表达式,利用二次函数的基本性质求得的最小值.
【详解】,,,
,
解得,
以点为坐标原点,所在直线为轴建立如下图所示的平面直角坐标系,
,
∵,∴的坐标为,
∵又∵,则,设,则(其中),
,,
,
所以,当时,取得最小值.
故答案为:;.
【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.
45.
【分析】以点为坐标原点,、所在直线分别为、轴建立平面直角坐标系,求得点的坐标,利用平面向量数量积的坐标运算可求得以及的值.
【详解】以点为坐标原点,、所在直线分别为、轴建立如下图所示的平面直角坐标系,
则点、、、,
,
则点,,,
因此,,.
故答案为:;.
【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点的坐标是解答的关键,考查计算能力,属于基础题.
9-平面向量-五年2018-2022高考数学真题按知识点分类汇编: 这是一份9-平面向量-五年2018-2022高考数学真题按知识点分类汇编,共30页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
五年2018-2022高考数学真题按知识点分类汇编27-概率(含解析): 这是一份五年2018-2022高考数学真题按知识点分类汇编27-概率(含解析),共26页。试卷主要包含了单选题,填空题,解答题,双空题等内容,欢迎下载使用。
五年2018-2022高考数学真题按知识点分类汇编26-计数原理(含解析): 这是一份五年2018-2022高考数学真题按知识点分类汇编26-计数原理(含解析),共17页。试卷主要包含了单选题,填空题,解答题,双空题等内容,欢迎下载使用。