搜索
    上传资料 赚现金
    英语朗读宝

    重庆巴川小班2022年中考四模数学试题含解析

    重庆巴川小班2022年中考四模数学试题含解析第1页
    重庆巴川小班2022年中考四模数学试题含解析第2页
    重庆巴川小班2022年中考四模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆巴川小班2022年中考四模数学试题含解析

    展开

    这是一份重庆巴川小班2022年中考四模数学试题含解析,共18页。试卷主要包含了下列各数中是有理数的是,的相反数是,四组数中等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是(  )

    A. B. C. D.
    2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    3.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    4.将2001×1999变形正确的是(  )
    A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1
    5.下列各数中是有理数的是(  )
    A.π B.0 C. D.
    6.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    7.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是(  )

    A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
    8.的相反数是 ( )
    A.6 B.-6 C. D.
    9.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是(  )
    A.216000米 B.0.00216米
    C.0.000216米 D.0.0000216米
    10.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是(  )
    A.①② B.①③ C.①④ D.①③④
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算:|﹣3|+(﹣1)2= .
    12.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
    13.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
    14.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
    15.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
    16.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.

    17.已知正比例函数的图像经过点M( )、、,如果,那么________.(填“>”、“=”、“<”)
    三、解答题(共7小题,满分69分)
    18.(10分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)

    19.(5分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    20.(8分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

    21.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
    操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;
    ②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是 .猜想论证
    当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究
    已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长
    22.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
    (Ⅰ)求反比例函数的解析式;
    (Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;
    (Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

    23.(12分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣ <a<的整数解.
    24.(14分)计算:.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    俯视图是从上面看几何体得到的图形,据此进行判断即可.
    【详解】
    由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
    拿掉第一排的小正方形,
    拿掉这个小立方体木块之后的几何体的俯视图是,
    故选B.
    【点睛】
    本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
    2、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    3、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    4、A
    【解析】
    原式变形后,利用平方差公式计算即可得出答案.
    【详解】
    解:原式=(2000+1)×(2000-1)=20002-1,
    故选A.
    【点睛】
    此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
    5、B
    【解析】
    【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
    【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
    B、0是有理数,故本选项正确;
    C、是无理数,故本选项错误;
    D、是无理数,故本选项错误,
    故选B.
    【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
    6、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、C
    【解析】
    利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
    【详解】
    解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
    ∴a+b<1,ab<1,a﹣b<1,a÷b<1.
    故选:C.
    8、D
    【解析】
    根据相反数的定义解答即可.
    【详解】
    根据相反数的定义有:的相反数是.
    故选D.
    【点睛】
    本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
    9、B
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    2.16×10﹣3米=0.00216米.
    故选B.
    【点睛】
    考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    10、C
    【解析】
    根据倒数的定义,分别进行判断即可得出答案.
    【详解】
    ∵①1和1;1×1=1,故此选项正确;
    ②-1和1;-1×1=-1,故此选项错误;
    ③0和0;0×0=0,故此选项错误;
    ④−和−1,-×(-1)=1,故此选项正确;
    ∴互为倒数的是:①④,
    故选C.
    【点睛】
    此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4.
    【解析】
    |﹣3|+(﹣1)2=4,
    故答案为4.
    12、2或1
    【解析】
    点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
    【详解】
    解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
    当点在圆内时,则这个圆的半径是(6+2)÷2=1.
    故答案为2或1.
    【点睛】
    此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
    13、1
    【解析】
    一组数据中出现次数最多的数据叫做众数,由此可得出答案.
    【详解】
    ∵一组数据1,3,5,x,1,5的众数和中位数都是1,
    ∴x=1,
    故答案为1.
    【点睛】
    本题考查了众数的知识,解答本题的关键是掌握众数的定义.
    14、4
    【解析】
    由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
    故答案为4.
    点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    15、
    【解析】
    设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
    【详解】
    ∵甲平均每分钟打x个字,
    ∴乙平均每分钟打(x+20)个字,
    根据题意得:,
    故答案为.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    16、 (1,0)
    【解析】
    分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.
    详解:
    如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.

    若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
    由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
    可知△CDE的周长最小,
    ∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
    ∴BC=3,D′O=DO=2,D′B=6,
    ∵OE∥BC,
    ∴Rt△D′OE∽Rt△D′BC,有
    ∴OE=1,
    ∴点E的坐标为(1,0).
    故答案为:(1,0).
    点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.
    17、>
    【解析】
    分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.
    详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.
    故答案为>.
    点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.

    三、解答题(共7小题,满分69分)
    18、不会有触礁的危险,理由见解析.
    【解析】
    分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
    详解:过点A作AH⊥BC,垂足为点H.

    由题意,得∠BAH=60°,∠CAH=45°,BC=1.
    设AH=x,则CH=x.
    在Rt△ABH中,∵,
    解得:.
    ∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
    点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    19、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    20、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
    【解析】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
    【详解】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,
    根据题意得:x(31﹣1x)=116,
    解得:x1=7,x1=9,
    ∴31﹣1x=18或31﹣1x=14,
    ∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,
    根据题意得:y(36﹣1y)=172,
    整理得:y1﹣18y+85=2.
    ∵△=(﹣18)1﹣4×1×85=﹣16<2,
    ∴该方程无解,
    ∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
    21、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.
    【解析】
    (1)①由旋转可知:AC=DC,
    ∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.
    ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.
    ②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.

    由①可知:△ADC是等边三角形, DE∥AC,∴DN=CF,DN=EM.
    ∴CF=EM.
    ∵∠C=90°,∠B =30°
    ∴AB=1AC.
    又∵AD=AC
    ∴BD=AC.

    ∴.
    (1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
    ∵△DEC是由△ABC绕点C旋转得到,
    ∴BC=CE,AC=CD,
    ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
    ∴∠ACN=∠DCM,
    ∵在△ACN和△DCM中, ,
    ∴△ACN≌△DCM(AAS),
    ∴AN=DM,
    ∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
    即S1=S1;
    (3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
    所以BE=DF1,且BE、DF1上的高相等,
    此时S△DCF1=S△BDE;
    过点D作DF1⊥BD,
    ∵∠ABC=20°,F1D∥BE,
    ∴∠F1F1D=∠ABC=20°,
    ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
    ∴∠F1DF1=∠ABC=20°,
    ∴△DF1F1是等边三角形,
    ∴DF1=DF1,过点D作DG⊥BC于G,
    ∵BD=CD,∠ABC=20°,点D是角平分线上一点,
    ∴∠DBC=∠DCB=×20°=30°,BG=BC=,
    ∴BD=3
    ∴∠CDF1=180°-∠BCD=180°-30°=150°,
    ∠CDF1=320°-150°-20°=150°,
    ∴∠CDF1=∠CDF1,
    ∵在△CDF1和△CDF1中,

    ∴△CDF1≌△CDF1(SAS),
    ∴点F1也是所求的点,
    ∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
    ∴∠DBC=∠BDE=∠ABD=×20°=30°,
    又∵BD=3,
    ∴BE=×3÷cos30°=3,
    ∴BF1=3,BF1=BF1+F1F1=3+3=2,
    故BF的长为3或2.

    22、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).
    【解析】
    试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;
    (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;
    (3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.
    试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,
    ∴-1=,
    ∴m=-3,
    ∴反比例函数的解析式为;
    (2),
    ∴=,
    x2-x-6=0,
    (x-3)(x+2)=0,
    x1=3,x2=-2,
    当x=-2时,y=,
    ∴D(-2,);
    y1>y2时x的取值范围是-2

    相关试卷

    2024年重庆市量子巴川中考全真演练数学试题(三模):

    这是一份2024年重庆市量子巴川中考全真演练数学试题(三模),共6页。试卷主要包含了作图请一律用黑色2B铅笔完成;等内容,欢迎下载使用。

    2022届重庆市巴川中学中考冲刺卷数学试题含解析:

    这是一份2022届重庆市巴川中学中考冲刺卷数学试题含解析,共22页。试卷主要包含了下列命题中错误的有个,﹣3的绝对值是等内容,欢迎下载使用。

    2021-2022学年四川省巴中学市巴州区中考四模数学试题含解析:

    这是一份2021-2022学年四川省巴中学市巴州区中考四模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的俯视图是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map