|试卷下载
搜索
    上传资料 赚现金
    浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析01
    浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析02
    浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份浙江省绍兴市名校2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,估计5﹣的值应在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是  

    A.50° B.70° C.80° D.110°
    2.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是(  )

    A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
    3.下列运算正确的是(  )
    A. B.
    C. D.
    4.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于(  )

    A.∠EDB B.∠BED C.∠EBD D.2∠ABF
    5.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是(  )

    A.10 B.12 C.20 D.24
    6.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为(  )
    A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5
    7.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1
    A.t≥–2 B.–2≤t<7
    C.–2≤t<2 D.2 8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    9.估计5﹣的值应在(  )
    A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
    10.若一个多边形的内角和为360°,则这个多边形的边数是(    )
    A.3                                            B.4                                            C.5                                            D.6
    二、填空题(共7小题,每小题3分,满分21分)
    11.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.

    12.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两
    点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”
    所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四
    边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
    13.在函数y=的表达式中,自变量x的取值范围是 .
    14.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
    15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:






    1′05″33
    1′04″26
    1′04″26
    1′07″29
    s2
    1.1
    1.1
    1.3
    1.6
    如果选拔一名学生去参赛,应派_________去.
    16.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)

    17.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .

    三、解答题(共7小题,满分69分)
    18.(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
    方案一:买一件甲种商品就赠送一件乙种商品;
    方案二:按购买金额打八折付款.
    某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
    (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
    (2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
    19.(5分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
    (1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是   ;
    (2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
    (3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
    20.(8分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.

    请结合统计图,回答下列问题:
    (1)本次调查学生共    人,a=   ,并将条形图补充完整;
    (2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
    (3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
    21.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.

    22.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    23.(12分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

    (1)求证:△ABG≌△C′DG;
    (2)求tan∠ABG的值;
    (3)求EF的长.
    24.(14分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
    【详解】
    因为a∥b,
    所以∠1=∠BAD=50°,
    因为AD是∠BAC的平分线,
    所以∠BAC=2∠BAD=100°,
    所以∠2=180°-∠BAC=180°-100°=80°.
    故本题正确答案为C.
    【点睛】
    本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
    2、A
    【解析】
    试题分析:充分利用图形,直接从图上得出x的取值范围.
    由图可知,当y<1时,x<-4,故选C.
    考点:本题考查的是一次函数的图象
    点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
    3、D
    【解析】
    由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
    【详解】
    解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
    B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
    C、(-a)3=≠,故原题计算错误;
    D、2a2•3a3=6a5,故原题计算正确;
    故选:D.
    【点睛】
    本题考查了整式的乘法,解题的关键是掌握有关计算法则.
    4、C
    【解析】
    根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.
    【详解】
    在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.
    【点睛】
    .
    本题主要考查全等三角形的判定与性质,熟悉掌握是关键.
    5、B
    【解析】
    过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
    观察图象可知AB=AC=5,
    ∴BM==3,∴BC=2BM=6,
    ∴S△ABC==12,
    故选B.

    【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
    6、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.000 0025=2.5×10﹣6;
    故选B.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    7、B
    【解析】
    利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
    【详解】
    抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
    ∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
    当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
    当﹣1<x<4时,﹣2≤y<7,
    而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
    ∴﹣2≤t<7,
    故选B.
    【点睛】
    本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
    8、C
    【解析】
    试题分析:根据主视图是从正面看得到的图形,可得答案.
    解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
    故选C.
    考点:简单组合体的三视图.
    9、C
    【解析】
    先化简二次根式,合并后,再根据无理数的估计解答即可.
    【详解】
    5﹣=,
    ∵49<54<64,
    ∴7<<8,
    ∴5﹣的值应在7和8之间,
    故选C.
    【点睛】
    本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
    10、B
    【解析】
    利用多边形的内角和公式求出n即可.
    【详解】
    由题意得:(n-2)×180°=360°,
    解得n=4;
    故答案为:B.
    【点睛】
    本题考查多边形的内角和,解题关键在于熟练掌握公式.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
    【详解】
    解:连接CD,
    ∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠DCA=∠BAC=45°,
    ∴△ADC是等腰直角三角形,
    ∴,∠ADC=90°,
    ∴∠BDC=90°,
    ∵∠ACB=75°,
    ∴∠BCD=30°,
    ∴BC= ,
    故答案为.

    【点睛】
    此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形
    12、A
    【解析】
    试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;
    ②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;
    ③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.
    故选A.

    考点:1.反比例函数综合题;2.动点问题的函数图象.
    13、x≥1.
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    根据题意得,x﹣1≥0,
    解得x≥1.
    故答案为x≥1.
    【点睛】
    本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.
    14、1
    【解析】
    本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
    【详解】
    解:设利润为w元,
    则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
    ∵10≤x≤20,
    ∴当x=1时,二次函数有最大值25,
    故答案是:1.
    【点睛】
    本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
    15、乙
    【解析】
    ∵丁〉甲乙=丙,
    ∴从乙和丙中选择一人参加比赛,
    ∵S 乙2<S 丙2,
    ∴选择乙参赛,
    故答案是:乙.
    16、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    17、20°
    【解析】
    根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹣∠PAB得到∠BAC的度数.
    【详解】
    解:∵PA是⊙O的切线,AC是⊙O的直径,
    ∴∠PAC=90°.
    ∵PA,PB是⊙O的切线,
    ∴PA=PB.
    ∵∠P=40°,
    ∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,
    ∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.
    故答案为20°.
    【点睛】
    本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.

    三、解答题(共7小题,满分69分)
    18、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
    【解析】
    (1)根据方案即可列出函数关系式;
    (2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
    解:(1) 得:;
    得:;
    (2)
    ,
    因为w是m的一次函数,k=-4<0,
    所以w随的增加而减小,m当m=20时,w取得最小值.
    即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
    19、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
    【解析】
    (1)先判断出m(n﹣1)=6,进而得出结论;
    (2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
    (3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
    【详解】
    (1)设m=x,n﹣1=y,
    ∵mn﹣m=6,
    ∴m(n﹣1)=6,
    ∴xy=6,

    ∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
    故答案为:;
    (2)∴点P(x,y)到点A(0,1),
    ∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
    ∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
    ∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
    ∴x2+(y﹣1)2=(y+1)2,

    (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
    ∴线段MN的中点为Q的纵坐标为

    ∴x2﹣4kx﹣4b=0,
    ∴x1+x2=4k,x1x2=﹣4b,





    ∴点Q到x轴的最短距离为1.
    【点睛】
    此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.
    20、(1)300,10; (2)有800人;(3) .
    【解析】试题分析:
    试题解析:(1)120÷40%=300,
    a%=1﹣40%﹣30%﹣20%=10%,
    ∴a=10,
    10%×300=30,
    图形如下:

    (2)2000×40%=800(人),
    答:估计该校选择“跑步”这种活动的学生约有800人;
    (3)画树状图为:

    共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
    所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
    考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
    21、 (1)∠B=40°;(2)AB= 6.
    【解析】
    (1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案; 
    (2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
    【详解】
    解:(1)如解图①,连接OD,

    ∵BC切⊙O于点D,
    ∴∠ODB=90°,
    ∵∠C=90°,
    ∴AC∥OD,
    ∴∠CAD=∠ADO,
    ∵OA=OD,
    ∴∠DAO=∠ADO=∠CAD=25°,
    ∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
    ∵∠ODB=90°,
    ∴∠B=90°-∠DOB=90°-50°=40°;
    (2)如解图②,连接OF,OD,

    ∵AC∥OD,
    ∴∠OFA=∠FOD,
    ∵点F为弧AD的中点,
    ∴∠AOF=∠FOD,
    ∴∠OFA=∠AOF,
    ∴AF=OA,
    ∵OA=OF,
    ∴△AOF为等边三角形,
    ∴∠FAO=60°,则∠DOB=60°,
    ∴∠B=30°,
    ∵在Rt△ODB中,OD=2,
    ∴OB=4,
    ∴AB=AO+OB=2+4=6.
    【点睛】
    本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
    22、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    23、(1)证明见解析(2)7/24(3)25/6
    【解析】(1)证明:∵△BDC′由△BDC翻折而成,
    ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
    在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
    ∴△ABG≌△C′DG(ASA)。
    (2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
    设AG=x,则GB=1﹣x,
    在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
    ∴。
    (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
    ∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
    ∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
    ∴EF=EH+HF=。
    (1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
    (2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
    (3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
    24、
    【解析】
    解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.
    【详解】
    ∵,

    若b>2a,
    即a=2,3,4,5,6    b=4,5,6
    符合条件的数组有(2,5)(2,6)共有2个,
    若b<2a,
    符合条件的数组有(1,1)共有1个,
    ∴概率p=.
    故答案为:.
    【点睛】
    本题主要考查了古典概率及其概率计算公式的应用.

    相关试卷

    2022年浙江省衢州市江山市达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年浙江省衢州市江山市达标名校中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了下列运算正确的是,如果,则a的取值范围是等内容,欢迎下载使用。

    2022年浙江省临海市~重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年浙江省临海市~重点名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了一组数据1,2,3,3,4,1等内容,欢迎下载使用。

    2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map