终身会员
搜索
    上传资料 赚现金
    中考数学压轴题--二次函数--专题14 存在性-平行四边形
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题14 存在性-平行四边形(原卷版).doc
    • 解析
      专题14 存在性-平行四边形(解析版).doc
    中考数学压轴题--二次函数--专题14 存在性-平行四边形01
    中考数学压轴题--二次函数--专题14 存在性-平行四边形02
    中考数学压轴题--二次函数--专题14 存在性-平行四边形03
    中考数学压轴题--二次函数--专题14 存在性-平行四边形01
    中考数学压轴题--二次函数--专题14 存在性-平行四边形02
    中考数学压轴题--二次函数--专题14 存在性-平行四边形03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学压轴题--二次函数--专题14 存在性-平行四边形

    展开
    这是一份中考数学压轴题--二次函数--专题14 存在性-平行四边形,文件包含专题14存在性-平行四边形解析版doc、专题14存在性-平行四边形原卷版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。


    方法点拨
    平行四边形ABCD,O为对角线AC与BD的交点,则O的坐标为()或者()
    解题方法:
    (1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论;
    (2)利用中点坐标公式列方程计算
    例题演练
    1.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
    (1)求抛物线的二次函数解析式:
    (2)若点P在抛物线上,点Q在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;
    (3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.
    2.如图,直线与x轴交于点A,与y轴交于点B,抛物线经过A、B,且与x轴交于点C,连接BC.
    (1)求b、c的值;
    (2)点P为线段AC上一动点(不与A、C重合),过点P作直线PD∥AB,交BC于点D,连接PB,设PC=n,△PBD的面积为S,求S关于n的函数关系式,并写出自变量n的取值范围;
    (3)在(2)的条件下,当S最大时,点M在抛物线上,在直线PD上,是否存在点Q,使以M、Q、P、B为顶点为四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
    3.如图,抛物线与y轴交于点A(0,1),过点A的直线与抛物线交于另一点B(3,),过点B作BC⊥x轴,垂足为C.
    (1)求抛物线的表达式;
    (2)点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.①当点P在线段OC上(不与点O、C重合)时,试用含m的代数式表示线段PM的长度;
    ②如果以点M、N、B、C为顶点的四边形是平行四边形,求m的值.
    4.如图所示,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(﹣2,0),B(5,0),点C在抛物线上,且直线AC与x轴形成的夹角为45°.
    (1)求该抛物线的函数表达式;
    (2)若点P为直线AC上方抛物线上的动点,求点P到直线AC距离的最大值;
    (3)将满足(2)中到直线AC距离最大时的点P,向下平移4个单位长度得到点Q,将原抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1(a1≠0),M为平移后抛物线上的动点,N为平移后抛物线对称轴上的动点,是否存在点M,使得以点C,Q,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
    5.如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,A(﹣2,0),B(4,0),在对称轴右侧的抛物线上有一动点D,连接BD,BC,CD.
    (Ⅰ)求抛物线的函数表达式;
    (Ⅱ)若点D在x轴的下方,设点D的横坐标为t,过点D作DE垂直于x轴,交BC于点F,用含有t的式子表示DF的长,并写出t的取值范围;
    (Ⅲ)在(Ⅱ)的条件下,当△CBD的面积是时,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
    6.如图,抛物线y=﹣x2+bx+c的对称轴为直线x=,其图象与直线y=x+2交于C,D两点,其中点C在y轴上,点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.
    (1)求抛物线的解析式;
    (2)若点P的横坐标为x0,当x0为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由.
    7.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为x=﹣1,已知经过A、C两点直线解析式为y=﹣3x+3.
    (1)求此抛物线的解析式;
    (2)连接BC,点P在抛物线上且在直线BC的上方,过点P作y轴的平行线交BC于点Q,过点P作AC的平行线交BC于点K,求出使△PQK的周长最大的值及此时点P的坐标;
    (3)如图2,在(2)的条件下,将抛物线向左平移一定距离使平移后的抛物线经过点P,在直线PK上有一动点M,点N在平移后的抛物线上,以B、Q、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.
    8.如图1,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c交x轴于A,B两点(A在B左侧),交y轴于点C,且OC=OB=3,对称轴l交抛物线于点D,交x轴于点G.
    (1)求抛物线的表达式及顶点坐标;
    (2)如图2,过点C作CH⊥DG于H,在射线HG上有一动点M(不与H重合),连接MC,将MC绕M点顺时针旋转90°得线段MN,连接DN,在点M的运动过程中,是否为定值?若是,求出该定值;若不是,说明理由;
    (3)如图3,将抛物线y=﹣x2+bx+c向右平移后交直线l于点E,交原抛物线于点Q且点Q在第一象限,过点Q作QP⊥x轴于点P,设点Q的横坐标为m,问:在原抛物线y=﹣x2+bx+c上是否存在点F,使得以P,Q,E,F为顶点的四边形是平行四边形?若存在,求出m的值;若不存在,说明理由.
    9.如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,P为线段AB上一动点,将射线PB绕P逆时针方向旋转45°后与函数图象交于点Q.
    (1)求二次函数y=ax2+bx+4的表达式;
    (2)当P在二次函数对称轴上时,求此时PQ的长;
    (3)求线段PQ的最大值;
    (4)抛物线对称轴上是否存在D,使P、Q、B、D四点能构成平行四边形,若存在,请求出点D的坐标,若不存在,请说明理由.
    10.抛物线y=ax2+bx+c经过点A(﹣1,0)、B(4,0),与y轴交于点C(0,4).
    (1)求抛物线的表达式;
    (2)点P为直线BC上方抛物线的一点,分别连接PB、PC,若直线BC恰好平分四边形COBP的面积,求P点坐标;
    (3)在(2)的条件下,是否在该抛物线上存在一点Q,该抛物线对称轴上存在一点N,使得以A、P、Q、N为顶点的四边形为平行四边形?若存在,求出Q点坐标,若不存在,请说明理由.
    相关试卷

    2023年中考数学二轮复习二次函数压轴题专题14 存在性-平行四边形(教师版): 这是一份2023年中考数学二轮复习二次函数压轴题专题14 存在性-平行四边形(教师版),共25页。

    专题14 存在性-平行四边形-中考数学压轴题满分突破之二次函数篇(全国通用): 这是一份专题14 存在性-平行四边形-中考数学压轴题满分突破之二次函数篇(全国通用),文件包含专题14存在性-平行四边形解析版doc、专题14存在性-平行四边形原卷版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    中考数学压轴题--二次函数--专题17 存在性-正方形: 这是一份中考数学压轴题--二次函数--专题17 存在性-正方形,文件包含专题17存在性-正方形解析版doc、专题17存在性-正方形原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学压轴题--二次函数--专题14 存在性-平行四边形
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map