所属成套资源:最新核心考点突破九年级数学精选专题培优讲与练 人教版
- 培优专题19 求阴影部分的面积-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 2 次下载
- 培优专题21 与概率有关的创新问题探究-【核心考点突破】2022-2023学年九年级数学上册精选专题培优讲与练(人教版) 试卷 1 次下载
- 培优专题25 相似三角形的一线三等角模型-【核心考点突破】2022-2023学年九年级数学精选专题培优讲与练(人教版) 试卷 1 次下载
- 培优专题27 与解直角三角形有关的重难点题型-【核心考点突破】2022-2023学年九年级数学精选专题培优讲与练(人教版) 试卷 1 次下载
- 培优专题28 与解直角三角形有关的重难点题型-解析版 试卷 1 次下载
培优专题26 解直角三角形模型-【核心考点突破】2022-2023学年九年级数学精选专题培优讲与练(人教版)
展开
这是一份九年级上册本册综合课后复习题,文件包含培优专题26解直角三角形模型-解析版docx、培优专题26解直角三角形模型-原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
培优专题26 解直角三角形模型 类型一:背靠背型1.(2022·山东聊城·二模)从2019年底以来,新冠疫情一直困扰着我们的日常生活,今年为进一步加强疫情防控工作,某公司决定安装红外线体温检测仪,这种设备的原理是采用非接触式测温法,只要用红外体温测试仪的镜头对准被测对象进行扫描,其体温就可立刻在显示屏上显示出来,从而有效地避免了其他常规测温法所可能造成的交叉感染,测温区域示意图如图所示,已知最大探测角∠PAO=75°,最小探测角∠PBO=30°.(参考数据:=1.414,=1.732,=2.236)(1)若该设备安装在离水平地面距离为2.2m的P处,即OP=2.2m,请求出图中OB的长度;(结果精确到0.1m)(2)若该公司要求测温区域AB的长度为4 m,请求出该设备的安装高度OP的高度.(结果精确到0.1 m) 2.(2021·湖南永州·中考真题)已知锐角中,角A,B,C的对边分别为a,b,c,边角总满足关系式:.(1)如图1,若,求b的值;(2)某公园准备在园内一个锐角三角形水池中建一座小型景观桥(如图2所示),若米,米,,求景观桥的长度. 3.(2021·甘肃武威·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(在同一条直线上).数据收集:通过实地测量:地面上两点的距离为.问题解决:求宝塔的高度(结果保留一位小数).参考数据:,.根据上述方案及数据,请你完成求解过程. 4.(2021·云南·模拟预测)如图,我市计划在某工业园区内,为相距4千米的彩印公司、包装公司修一条笔直的公路.点P表示住宅小区,在彩印公司北偏东方向与包装公司北偏西方向的交点,住宅小区在以P为圆心,0.8千米为半径的范围内,问这条公路是否会穿越这个住宅小区?(参考数据:,) 5.(2021·湖北武汉·一模)【问题背景】如图1,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,求证:BA2=BD•BC;【尝试应用】如图2,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,点E在边AB上,点G在AB的延长线上,延长ED交CG于点F,若3AD=2AC,BE=ED,BG=2,DF=1,求BE的长度;【拓展创新】如图3,在△ABC中,点D在边BC上(AB≠AD)且满足∠ACB=2∠BAD,DH⊥AB垂足为H,若,请直接写出的值________. 类型二:子母型6.(2022·辽宁鞍山·二模)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596.tan53.4°≈1.346) 7.(2021·辽宁锦州·中考真题)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC//MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1∶3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19) 8.(2021·北京市第十二中学八年级阶段练习)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长. 9.(2020·山东青岛·九年级期末)如图,某大楼的顶部竖有一块宣传牌,小明在斜坡的坡脚处测得宣传牌底部的仰角为,沿斜坡向上走到处测得宣传牌顶部的仰角为,已知斜坡的坡度,米,米,求宣传牌的高度.(测角器的高度忽略不计,参考数据:,, 10.(2020·四川凉山·九年级阶段练习)四川省委书记杜青林、国家旅游局副局长张希钦2006年12月16日向获得“中国优秀旅游城市”称号的西昌市授牌,并修建了标志性建筑——马踏飞燕,如图.某学习小组把测量“马踏飞燕”雕塑的最高点离地面的高度作为一次课题活动,制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据的度数的度数的长度仪器()的高31°42°3米1.65米 请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留到十分位).(参考数据:,,,,,) 类型三:拥抱型11.(2020·四川眉山·中考真题)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为米的发射塔,如图所示,在山脚平地上的处测得塔底的仰角为,向小山前进米到达点处,测得塔顶的仰角为,求小山的高度. 12.(2020·山西太原·模拟预测)山西大学主校区内有一座毛主席塑像,落成于1969年12月26日.是山西大学的标志性建筑之一,目前已被列入保护文物.综合与实践小组的同学们开展了测量这一毛主席塑像高度的活动.他们在该塑像底部所在的平地上,选取一个测点,测量了塑像顶端的仰角,调高测倾器后二次测量了塑像顶端的仰角.为了减小测量误差,小组在测量仰角的度数及测倾器高度时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表.课题测量毛主席塑像的高度组长:XXX 组员:XXX,XXX,XXX测倾器,皮尺等成员测量工具测量示意图说明:线段的长表示塑像从最高点到地面之间的距离,为测点,线段,表示测倾器(点在上),点,,,,都在同一竖直平面内,且,;、表示两次测量的仰角,点,在上.测量数据测量项目第一次第二次平均值的度数的度数测倾器的高测倾器的高 任务:(1)根据以上测量结果,请你帮助该“综合与实践”小组求出毛主席塑像的高度;(参考数据:,,,,,)(2)该综合与实践小组在制定方案时,讨论“用已知高度的侧倾器测出仰角,再测出的长来计算塑像高度”的方案,但未被采纳,你认为其原因可能是什么?(写出一条即可) 13.(2021·河南·九年级专题练习)某数学兴趣小组学过锐角三角函数后,到市龙源湖公园测量塑像“夸父追日”的高度,如图所示,在A处测得塑像顶部D的仰角为45°,塑像底部E的仰角为30.1°,再沿AC方向前进10m到达B处,测得塑像顶部D的仰角为59.1°.求塑像“夸父追日”DE高度.(结果精确到0.1m.参考数据:sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67) 14.(2018·北京四中九年级期中)如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在条直线上的三点为楼底),,她在处测得广告牌顶端的仰角为,在处测得商场大楼楼顶的仰角为米.已知广告牌的高度米,求这座商场大楼的高度(,小红的身高不计,结果保留整数). 15.(2018·四川眉山·九年级期末)在“双创”活动中,某校将双创宣传牌(AB)放置在教学楼顶部(如图所示).数学兴趣小组成员小明在操场上的点D处,用高度为1 m的测角仪CD,从点C测得宣传牌的底部B的仰角为,然后向教学楼正方向走了4 m到达点F处,又从点E测得宣传牌顶部A的仰角为.已知教学楼高,且点A、B、M在同一直线上,求宣传牌AB的高度.(参考数据:,,,)类型四:12345型16.(2018·广东·深圳市光明区公明中学九年级阶段练习)如图,在平面直角坐标系中,点A(,0),B(0,2),点C在第一象限,∠ABC=135°,AC交轴于D,CD=3AD,反比例函数的图象经过点C,则的值为_______. 17.(2018·江苏无锡·九年级期末)如图,在正方形ABCD中,P是BC的中点,把△PAB沿着PA翻折得到△PAE,过C作CF⊥DE于F,若CF=2,则DF=_____. 18.(2018·山东滨州·中考真题)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____. 19.(2018·山东泰安·中考真题)如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________. 20.(2017·浙江丽水·中考真题)(2017丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是____;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.
相关试卷
这是一份初中数学人教版九年级上册本册综合随堂练习题,文件包含培优专题27与解直角三角形有关的重难点题型-解析版docx、培优专题27与解直角三角形有关的重难点题型-原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
这是一份数学九年级上册本册综合练习题,文件包含培优专题25相似三角形的一线三等角模型-解析版docx、培优专题25相似三角形的一线三等角模型-原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份初中数学人教版九年级上册本册综合课时练习,文件包含培优专题21与概率有关的创新问题探究-解析版docx、培优专题21与概率有关的创新问题探究-原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。