云南省昭通市盐津县市级名校2021-2022学年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
2.下列分式中,最简分式是( )
A. B. C. D.
3.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
4.方程x2+2x﹣3=0的解是( )
A.x1=1,x2=3 B.x1=1,x2=﹣3
C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
5.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )
A. B. C. D.不能确定
6.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A.15 B.13 C.12 D.5
7.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
8.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=,BP=3,AP的最大值是( )
A.+3 B.4 C.5 D.3
9.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A.35° B.45° C.55° D.65°
10.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )
A.0.76×104 B.7.6×103 C.7.6×104 D.76×102
二、填空题(共7小题,每小题3分,满分21分)
11.算术平方根等于本身的实数是__________.
12.不等式1﹣2x<6的负整数解是___________.
13.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.
14.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是___.
15.若关于x的方程有两个相等的实数根,则m的值是_________.
16.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.
17.使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_____.
三、解答题(共7小题,满分69分)
18.(10分)小明遇到这样一个问题:已知:. 求证:.
经过思考,小明的证明过程如下:
∵,∴.∴.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.
根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:
已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.
19.(5分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.
(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?
根据题意,先填写下表,再完成本问解答:
型号
A型
B型
购进数量(盏)
x
_____
购买费用(元)
_____
_____
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
20.(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
(1)求甲种树和乙种树的单价;
(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
21.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
(1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
22.(10分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
23.(12分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
24.(14分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
2、A
【解析】
试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.
考点:最简分式.
3、C
【解析】
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
4、B
【解析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
【详解】
x2+2x-3=0,
即(x+3)(x-1)=0,
∴x1=1,x2=﹣3
故选:B.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
5、B
【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
【详解】
∵AB=CD,
∴AC+BC=BC+BD,
即AC=BD,
又∵BC=2AC,
∴BC=2BD,
∴CD=3BD=3AC.
故选B.
【点睛】
本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
6、A
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a=OB,则,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM=a,
∴点A的坐标为(a,a).
∵四边形OACB是菱形,S△AOF=,
∴OB×AM=,
即×a×a=39,
解得a=±,而a>0,
∴a=,即A(,6),
∵点A在反比例函数y=的图象上,
∴k=×6=1.
故选A.
【解答】
解:
【点评】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.
7、C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
8、C
【解析】
过点C作,且CQ=CP,连接AQ,PQ,证明≌根据全等三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.
【详解】
过点C作,且CQ=CP,连接AQ,PQ,
在和中
≌
AP的最大值是5.
故选:C.
【点睛】
考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.
9、C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:7600=7.6×103,
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、0或1
【解析】
根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.
解:1和0的算术平方根等于本身.
故答案为1和0
“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.
12、﹣2,﹣1
【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.
解:1﹣2x<6,
移项得:﹣2x<6﹣1,
合并同类项得:﹣2x<5,
不等式的两边都除以﹣2得:x>﹣,
∴不等式的负整数解是﹣2,﹣1,
故答案为:﹣2,﹣1.
点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.
13、2
【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
【详解】
解:连接BD,
∵AB是⊙O的直径,
∴∠C=∠D=90°,
∵∠BAC=60°,弦AD平分∠BAC,
∴∠BAD=∠BAC=30°,
∴在Rt△ABD中,AB==4,
∴在Rt△ABC中,AC=AB•cos60°=4×=2.
故答案为2.
14、2n+1
【解析】
观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.
解:由已知一系列图形观察图形依次的周长分别是:
(1)2+1=3,
(2)2+2=4,
(3)2+3=5,
(4)2+4=6,
(5)2+5=7,
…,
所以第n个图形的周长为:2+n.
故答案为2+n.
此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.
15、m=-
【解析】
根据题意可以得到△=0,从而可以求得m的值.
【详解】
∵关于x的方程有两个相等的实数根,
∴△=,
解得:.
故答案为.
16、1或9
【解析】
(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示
∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAE,
∴∠OAD=∠ODA=∠DAC,
∴OD//AE,
∵DE是圆的切线,
∴DE⊥OD,
∴∠ODE=∠E=90o,
∴四边形ODEF是矩形,
∴OF=DE,EF=OD=5,
又∵OF⊥AC,
∴AF=,
∴AE=AF+EF=5+4=9.
(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示
同(1)可得:EF=OD=5,OF=DE=3,
在直角三角形AOF中,AF=,
∴AE=EF-AF=5-4=1.
17、12.1
【解析】
依据分式方程=1的解为负整数,即可得到k>,k≠1,再根据不等式组有1个整数解,即可得到0≤k<4,进而得出k的值,从而可得符合题意的所有k的和.
【详解】
解分式方程=1,可得x=1-2k,
∵分式方程=1的解为负整数,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式组,可得,
∵不等式组有1个整数解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值为1.1或2或2.1或3或3.1,
∴符合题意的所有k的和为12.1,
故答案为12.1.
【点睛】
本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.
三、解答题(共7小题,满分69分)
18、证明见解析
【解析】
解:∵,∴.∴.
∴是一元二次方程的根.
∴,∴.
19、(1)30x, y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;
(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
【详解】
解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:
解得:.
答:应购进A型台灯75盏,B型台灯2盏.
故答案为30x;y;50y;
(2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.
∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.
∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).
答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
【点睛】
本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.
20、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
【详解】
解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
根据题意得:
,
解得:
答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
根据题意得:
解得:
∵a为整数,
∴a≥1.
∵甲种树的单价比乙种树的单价贵,
∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
【点睛】
一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
21、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
22、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
【解析】
(1)∵,
∴,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn.
(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
故答案为1,2,1,2(答案不唯一).
(3)由题意,得a=m2+3n2,b=2mn.
∵2=2mn,且m、n为正整数,
∴m=2,n=1或m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=1.
23、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
【解析】
分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
详解:(1)依题意得:,解得:,
∴抛物线的解析式为.
∵对称轴为,且抛物线经过,
∴把、分别代入直线,
得,解之得:,
∴直线的解析式为.
(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
∴.即当点到点的距离与到点的距离之和最小时的坐标为.
(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
(3)设,又,,
∴,,,
①若点为直角顶点,则,即:解得:,
②若点为直角顶点,则,即:解得:,
③若点为直角顶点,则,即:解得:
,.
综上所述的坐标为或或或.
点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
24、见解析
【解析】
作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.
【详解】
解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.
点P即为所求.
【点睛】
本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.
云南省普洱市市级名校2021-2022学年中考三模数学试题含解析: 这是一份云南省普洱市市级名校2021-2022学年中考三模数学试题含解析,共22页。试卷主要包含了下列运算中正确的是,的算术平方根为,下列计算,正确的是等内容,欢迎下载使用。
云南省镇康县市级名校2021-2022学年中考数学四模试卷含解析: 这是一份云南省镇康县市级名校2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,函数的图像位于,下列各式正确的是等内容,欢迎下载使用。
辽宁省市级名校2021-2022学年中考数学五模试卷含解析: 这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。