2020-2022年山东中考数学3年真题汇编 专题25 概率(学生卷+教师卷)
展开专题25 概率
一、单选题
1.(2022·山东东营·中考真题)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )
A. B. C. D.
【答案】A
【分析】根据轴对称图形的定义,结合概率计算公式求解即可.
【详解】解:如图所示,由轴对称图形的定义可知当选取编号为1,3,5,6其中一个白色区域涂黑后,能使黑色方块构成的图形是轴对称图形,
∴任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是,
故选A.
【点睛】本题主要考查了轴对称图形的定义,简单的概率计算,熟知轴对称图形的定义是解题的关键.
2.(2022·山东济南·中考真题)某班级计划举办手抄报展览,确定了“5G时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )
A. B. C. D.
【答案】C
【分析】画树状图,共有9种等可能的结果,其中小明和小刚恰好选择同一个主题结果有3种,再由概率公式求解即可.
【详解】解:把“5G时代”、“北斗卫星”、“高铁速度”三个主题分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,其中小明和小刚恰好选择同一个主题的结果有3种,
∴小明和小刚恰好选择同一个主题的概率为.
故选:C.
【点睛】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
3.(2022·山东枣庄·中考真题)在践行“安全在我心中,你我一起行动”主题手抄报评比活动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是( )
A. B. C. D.
【答案】D
【分析】设“交通安全、消防安全、饮食安全、防疫安全”四个主题内容分别为A、B、C、D,画出树状图进行求解即可.
【详解】解:设“交通安全、消防安全、饮食安全、防疫安全”四个主题内容分别为A、B、C、D,画树状图如下:
共有16种等可能的结果,两人恰好选中同一主题的结果有4种,
则两人恰好选中同一主题的概率为.
故选:D.
【点睛】本题考查了列表法与树状图法求概率,读懂题意,画出树状图是解题的关键.
4.(2022·山东烟台·中考真题)如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )
A. B. C. D.1
【答案】B
【分析】画树状图,共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,再由概率公式求解即可.
【详解】解:把S1、S2、S3分别记为A、B、C,
画树状图如下:
共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,即AB、AC、BA、CA,
∴同时闭合两个开关能形成闭合电路的概率为.
故选:B.
【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比,列出树状图是解题的关键.
5.(2022·山东临沂·中考真题)为做好疫情防控工作,某学校门口设置了,两条体温快速检测通道,该校同学王明和李强均从通道入校的概率是( )
A. B. C. D.
【答案】A
【分析】先列表得到所有的等可能的结果数,以及符合条件的结果数,再利用概率公式计算即即可.
【详解】解:列表如下:
A
B
A
A,A
A,B
B
B,A
B,B
所以所有的等可能的结果数有4种,符合条件的结果数有1种,
所以该校同学王明和李强均从通道入校的概率是
故选A
【点睛】本题考查的是利用列表的方法或画树状图的方法求解简单随机事件的概率,掌握“列表的方法求概率”是解本题的关键.
6.(2022·山东威海·中考真题)一个不透明的袋子中装有2个红球、3个白球和4个黄球,每个球除颜色外都相同.从中任意摸出1个球,摸到红球的概率是( )
A. B. C. D.
【答案】A
【分析】根据题意可知,从中任意摸出1个球,一共有9种可能性,其中摸到红球的可能性有2种,从而可以计算出相应的概率.
【详解】解:一个不透明的袋子中装有2个红球、3个白球和4个黄球,
从中任意摸出1个球,一共有9种可能性,其中摸到红球的可能性有2种,
从中任意摸出1个球,摸到红球的概率是,
故选:A.
【点睛】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.
7.(2021·山东济南·中考真题)某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是( )
A. B. C. D.
【答案】C
【分析】根据题意,用列表法求出概率即可.
【详解】根据题意,设三个宣传队分别为列表如下:
小华\小丽
总共由9种等可能情况,她们恰好选择同一个宣传队的情况有3种,
则她们恰好选到同一个宣传队的概率是.
故选C
【点睛】本题考查了用列表法求概率,掌握列表法求概率是解题的关键.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.
8.(2021·山东滨州·中考真题)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )
A. B. C. D.
【答案】A
【分析】首先判断各图形是否是轴对称图形,再根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.
【详解】解:∵线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,
分别用A、B、C、D表示线段、等边三角形、平行四边形和正六边形,
∴随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为=,
故选:A.
【点睛】本题考查概率公式、轴对称图形,解答本题的关键是写出题目中的图形是否为轴对称图形,明确两张都是轴对称图形是同时发生的.
9.(2021·山东威海·中考真题)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
【答案】C
【分析】通过列举的方法将所有可能的情况一一列举,进而找出小球上的数字都是奇数的情况即可求出对应概率.
【详解】所有可能出现的情况列举如下:
;;;
;;
;
共10种情况,
符合条件的情况有:;;;共3种情况;
小球上的数字都是奇数的概率为,
故选:C.
【点睛】本题主要考查了简单概率的求解方法,通过列举法列举出等可能的情况是解决本题的关键.
10.(2021·山东东营·中考真题)经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为( )
A. B. C. D.
【答案】A
【分析】画树状图展示所有9种等可能的结果数,找出恰有一车直行,另一车左拐的结果数,然后根据概率公式求解.
【详解】解:画树状图为:
共有9种等可能的结果数,其中恰有一车直行,另一车左拐的结果数为2,
所以恰有一车直行,另一车左拐的概率= .
故选A.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
11.(2021·山东临沂·中考真题)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )
A. B. C. D.
【答案】D
【分析】列举出所有的情况,再得到至少有一盒过期的情况数,利用概率公式计算即可.
【详解】解:∵有4盒同一品牌的牛奶,其中2盒已过期,
设未过期的两盒为A,B,过期的两盒为C,D,随机抽取2盒,
则结果可能为(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),
共6种情况,其中至少有一盒过期的有5种,
∴至少有一盒过期的概率是,
故选D.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12.(2020·山东临沂·中考真题)从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( )
A. B. C. D.
【答案】C
【分析】列表得出所有等可能的情况数,找出所选两人恰好是马鸣和杨豪的情况数,即可求出所求的概率.
【详解】解:列表得:
所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,
恰好抽到马鸣和杨豪的概率是,
故选C.
【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
13.(2020·山东济宁·中考真题)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )
A. B. C. D.
【答案】D
【分析】根据图形规律可得第n个图形共有1+2+3+4+...+n=个正方体,最下面有n个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.
【详解】解:由图可知:
第1个图形共有1个正方体,最下面有1个带“心”字正方体;
第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体;
第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体;
第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;
...
第n个图形共有1+2+3+4+...+n=个正方体,最下面有n个带“心”字正方体;
则:第100个图形共有1+2+3+4+...+100==5050个正方体,最下面有100个带“心”字正方体;
∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是,
故选:D.
【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.
14.(2020·山东东营·中考真题)如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为( )
A. B. C. D.
【答案】C
【分析】画出树状图,找出所有等可能的结果,计算即可.
【详解】根据题意画出树状图如下:
共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,
∴,故选C.
【点睛】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.
15.(2020·山东枣庄·中考真题)布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )
A. B. C. D.
【答案】A
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得两次都摸到白球的情况,再利用概率公式求解即可求得答案.
【详解】解:画树状图得:
则共有9种等可能的结果,两次都摸到白球的有4种情况,
∴两次都摸到白球的概率为.
故选A.
【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题
16.(2022·山东济南·中考真题)如果小球在如图所示的地板上自由地滚动,并随机的停留在某块方砖上,那么它最终停留在阴影区域的概率是______.
【答案】
【分析】根据题意可得一共有9块方砖,其中阴影区域的有4块,再根据概率公式计算,即可求解.
【详解】解:根据题意得:一共有9块方砖,其中阴影区域的有4块,
∴它最终停留在阴影区域的概率是.
故答案为:
【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
17.(2022·山东聊城·中考真题)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点落在直角坐标系第二象限的概率是______________.
【答案】
【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】解:列表如下:
2
0
-1
3
(2,3)
(0,3)
(-1,3)
2
(2,2)
(0,2)
(-1,2)
-2
(2,-2)
(0,-2)
(-1,-2)
-3
(2,-3)
(0,-3)
(-1,-3)
由表可知,共有12种等可能,其中点落在直角坐标系第二象限的有2种,
所以点落在直角坐标系第二象限的概率是,
故答案为:.
【点睛】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
18.(2021·山东德州·中考真题)如图所示的电路图中,当随机闭合,,, 中的两个开关时,能够让灯泡发光的概率为 ______ .
【答案】
【分析】根据题意画出树状图,然后由树状图求得所有等可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.
【详解】解:设、、、分别用1、2、3、4表示,
画树状图得:
共有12种等可能的结果,能够让灯泡发光的有12,13,14,21,31,41,6种结果,
能够让灯泡发光的概率为:,
故答案为:.
【点睛】本题考查了树状图法求概率的知识,正确的画出树状图是解题的关键.
19.(2021·山东聊城·中考真题)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________.
【答案】
【分析】由等边三角形、平行四边形、菱形、圆中,既是中心对称图形,又是轴对称图形的有菱形、圆,再画出树状图展示所有等可能的结果,进而即可求得答案.
【详解】解:设等边三角形、平行四边形、菱形、圆分别为A,B,C,D,
根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形既是中心对称图形,又是轴对称图形为C、D共有2种情况,
∴P(既是中心对称图形,又是轴对称图形)=2÷12=.
故答案是:.
【点睛】本题考查了列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比,画出树状图,是解题的关键.
20.(2021·山东济南·中考真题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
【答案】##
【详解】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
∴P(飞镖落在白色区域)=
故答案为:.
21.(2020·山东济南·中考真题)一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是_______.
【答案】##0.4
【分析】根据概率的求解公式计算即可;
【详解】根据题意可得概率为:;
故答案是;
【点睛】本题主要考查了概率公式的一样,准确计算是解题的关键.
22.(2020·山东滨州·中考真题)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.
【答案】
【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.
【详解】五根木棒,任意取三根共有10种情况:
3、5、8
3、5、10
3、5、13
3、8、10
3、8、13
3、10、13
5、10、13
5、8、10
5、8、13
8、10、13
其中能组成三角形的有:
①3、8、10,由于8-3<10<8+3,所以能构成三角形;
②5、10、13,由于10-5<13<10+5,所以能构成三角形;
③5、8、10,由于8-5<10<8+5,所以能构成三角形;
④8、10、13,由于10-8<13<10+8,所以能构成三角形;
所以有4种方案符合要求,
故能构成三角形的概率是P==,
故答案为:.
【点睛】此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.
23.(2020·山东菏泽·中考真题)从,,,这四个数中任取两个不同的数分别作为,的值,得到反比例函数,则这些反比例函数中,其图象在二、四象限的概率是______.
【答案】
【分析】从,,,中任取两个数值作为,的值,表示出基本事件的总数,再表示出其积为负值的基础事件数,按照概率公式求解即可.
【详解】从,,,中任取两个数值作为,的值,其基本事件总数有:
共计12种;
其中积为负值的共有:8种,
∴其概率为:
故答案为:.
【点睛】本题结合反比例函数图象的性质,考查了概率的计算,能准确写出基本事件的总数,和满足条件的基本事件数,是解题的关键.
24.(2020·山东德州·中考真题)如图,在的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.
【答案】
【分析】根据轴对称的定义,确定可以构成轴对称图形的情况,根据概率公式求解即可.
【详解】解:如图,图中共有12个白色正方形,其中涂黑1个使新构成的黑色部分图形是轴对称图形的共有2种情况,
所以概率为P=.
故答案为:
【点睛】本题考查了列举法求概率,轴对称图形的判定,熟知求概率公式和轴对称图形的概念是解题关键.
25.(2020·山东聊城·中考真题)某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.
【答案】
【分析】先画出树状图求出所有等可能的结果数,再找出抽到同一类书籍的结果数,然后根据概率公式求解即可.
【详解】解:“科技”、“文学”、“艺术”三类书籍分别用A、B、C表示,则所有可能出现的结果如下图所示:
由上图可知:共有9种等可能的结果数,其中抽到同一类书籍的结果数有3种,
∴抽到同一类书籍的概率=.
故答案为:.
【点睛】本题考查了求两次事件的概率,属于基础题型,熟练掌握画树状图或列表的方法是解题的关键.
三、解答题
26.(2022·山东东营·中考真题)中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:背年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)在这次调查中,一共抽取了____________名学生;
(2)补全条形统计图;
(3)若该校共有学生1280名,请估计参加B项活动的学生数;
(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.
【答案】(1)200;
(2)见解析;
(3)估计参加B项活动的学生数有512名;
(4)画树状图见解析,他们参加同一项活动的概率为.
【分析】(1)根据D项活动所占圆心角度数和D项活动的人数计算即可;
(2)根据总人数求出参加C项活动的人数,进而可补全条形统计图;
(3)用该校总学生人数乘以抽查的学生中参加B项活动所占的比例即可;
(4)画出树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,然后根据概率公式计算即可.
(1)
解:(名),
即在这次调查中,一共抽取了200名学生,
故答案为:200;
(2)
参加C项活动的人数为:200-20-80-40=60(名),
补全条形统计图如图:
(3)
(名),
答:估计参加B项活动的学生数有512名;
(4)
画树状图如图:
由树状图可知,共有16种等可能的结果,其中他们参加同一项活动的情况数有4种,
所以他们参加同一项活动的概率为.
【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,列表法或树状图法求概率,能够从不同的统计图中获取有用信息是解题的关键.
27.(2022·山东菏泽·中考真题)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出上面不完整的统计图,请结合图中的信息解答下列问题:
(1)本次共调查了______名学生;并将条形统计图补充完整;
(2)C组所对应的扇形圆心角为_______度;
(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是__________;
(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.
【答案】(1)40,图见解析
(2)72
(3)560
(4)
【分析】(1)由A组人数及其所占百分比可得总人数,总人数减去A、B、D人数求出C组人数即可补全图形;
(2)用360°乘以C组人数所占比例即可;
(3)总人数乘以样本中B组人数所占比例即可;
(4)画树状图,共有12种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有6种,再由概率公式求解即可.
(1)
本次调查总人数为(名),
C组人数为(名),
补全图形如下:
故答案为:40;
(2)
,
故答案为:72;
(3)
(人),
故答案为:560;
(4)
画树状图如下:
共有12种等可能的结果,其中选出的2名学生恰好是1名男生与1名女生的结果共有6种,
∴选出的2名学生恰好是1名男生与1名女生的概率为.
【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体及用列表法或树状图法求概率,准确理解题意,熟练掌握知识点是解题的关键.
28.(2022·山东日照·中考真题)今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.
请根据统计图提供的信息,回答如下问题:
(1)x=________,y=________,并将直方图补充完整;
(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;
(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;
(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.
【答案】(1)30%,16%,图见解析
(2)95、94
(3)192人
(4)
【分析】(1)先求出被调查的总人数,继而可求得y、x的值;
(2)将数据重新排列,再根据中位数和众数的概念求解即可;
(3)用总人数乘以样本中优秀人数所占百分比即可;
(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
(1)
解:被调查的总人数为4÷8%=50(人),
∴优秀对应的百分比,
则一般对应的人数为50-(4+23+8)=15(人),
∴其对应的百分比,
补全图形如下:
故答案为:30%,16%.
(2)
解:将这组数据重新排列为91,93,94,94,96,98,99,100,
所以其中位数为,出现次数最多的是94,故众数为94,
故答案为:95,94;
(3)
解:估计该校学生对团史掌握程度达到优秀的人数为1200×16%=192(人);
答:估计该校学生对团史掌握程度达到优秀的人数为192人 .
(4)
解:画树状图为:
共有12种等可能情况,其中被抽取的2人恰好是女生的有6种结果,
所以恰好抽中2名女生参加知识竞赛的概率为.
【点睛】此题考查了用列表法或树状图法求概率、频数分布直方图、扇形统计图、众数、中位数、用样本估计总体等知识,数形结合与用列表法或树状图法求概率是解题的关键.
29.(2022·山东济宁·中考真题)6月5日是世界环境日.某校举行了环保知识竞赛,从全校学生中随机抽取了n名学生的成绩进行分析,并依据分析结果绘制了不完整的统计表和统计图(如下图所示).
学生成绩分布统计表
成绩/分
组中值
频率
75.5≤x<80.5
78
0.05
80.5≤x<85.5
83
a
85.5≤x<90.5
88
0.375
90.5≤x<95.5
93
0.275
95.5≤x<100.5
98
0.05
请根据以上图表信息,解答下列问题:
(1)填空:n= ,a= ;
(2)请补全频数分布直方图;
(3)求这n名学生成绩的平均分;
(4)从成绩在75.5≤x<80.5和95.5≤x<100.5的学生中任选两名学生.请用列表法或画树状图的方法,求选取的学生成绩在75.5≤x<80.5和95.5≤x<100.5中各一名的概率.
【答案】(1)40,0.25
(2)见解析
(3)88.125分
(4)图表见解析,
【分析】(1)根据“频率=频数÷总数”和频率之和为1可得答案;
(2)用总人数减去其他组的人数即为到组人数,即可补全频数分布直方图;
(3)利用平均数的计算公式计算即可;
(4)列出树状图即可求出概率
(1)
解:由图表可知:,
(2)
解:由(1)可知,到组人数为(人),
频数分布图为:
(3)
解: (分)
(4)
解:用A1,A2表示75.5≤x<80.5中的两名学生,用B1,B2表示95.5≤x<100.5中的两名学生,画树状图,得
由上图可知,所有结果可能性共12种,而每一种结果的可能性是一样的,其中每一组各有一名学生被选到有8种.
∴每一组各有一名学生被选到的概率为.
【点睛】本题主要考查本题考查读频数分布直方图,求平均数,利用树状图求概率,掌握相关的概念以及方法是解题的关键.
30.(2022·山东青岛·中考真题)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.
请用列表或画树状图的方法,说明这个游戏对双方是否公平.
【答案】游戏对双方都公平
【分析】根据题意列表求得双方的概率即可求解.
【详解】解:所有可能的结果如下:
乙
甲
1
2
3
4
5
1
2
∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果.
∴P(小冰获胜)
P(小雪获胜)
∵P(小冰获胜)=P(小雪获胜)
∴游戏对双方都公平.
【点睛】本题考查了游戏的公平性,列表法求概率,掌握求概率的方法是解题的关键.
31.(2022·山东泰安·中考真题)2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:,B组:.C组:,D组:,E组:,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
(1)本次调查一共随机抽取了 名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在 组;
(2)补全学生成绩频数直方图:
(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?
(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.
【答案】(1)400 名,D
(2)见解析
(3)1680人
(4)见解析,
【分析】(1)用C组的人数除以C组所占的百分比可得总人数,再用总人数乘以B组所占的百分比,可求出m,从而得到第200位和201位数落在D组,即可求解;
(2)求出E租的人数,即可求解;
(3)用学校总人数乘以成绩优秀的学生所占的百分比,即可求解;
(4)根据题意,画树状图,可得共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,再根据概率公式计算,即可求解.
(1)
解:名,
所以本次调查一天随机抽取 400 名学生的成绩,
频数直方图中,
∴第200位和201位数落在D组,
即所抽取学生成绩的中位数落在D组;
故答案为:400,D
(2)
解:E组的人数为名,
补全学生成绩频数直方图如下图:
(3)
解:该校成绩优秀的学生有(人);
(4)
解:根据题意,画树状图如图,
共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,
恰好抽中一名男生和一名女生的概率为.
【点睛】本题主要考查了频数直方图和扇形统计图,用样本估计总体,利用树状图或列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.
32.(2022·山东滨州·中考真题)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.
请根据以上图文信息回答下列问题:
(1)此次调查共抽取了多少名学生?
(2)请将此条形统计图补充完整;
(3)在此扇形统计图中,项目D所对应的扇形圆心角的大小为____________;
(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.
【答案】(1)100名
(2)见解析
(3)54°
(4)
【分析】(1)根据E组人数及其所占总体的百分比求出总体人数;
(2)通过(1)求出总人数,再求C组人数,从而根据人数补全条形图;
(3)用D组人数占总人数的百分比求出D组圆心角占360°的百分比,从而求出D对应的圆心角度数;
(4)先把全部情况绘制出来,再数出符合条件的情况个数,再计算出符合条件的情况的概率.
(1)
10÷10%=100(人)
(2)
C组的人数为:100-20-30-15-10=25(人)
补全条形图如图所示:
(3)
D组对应的度数为:
(4)
画树状图如图所示:
相同的有:AA、BB、CC、DD、EE五种情况;
共有25种情况,故相同的情况概率为:
【点睛】本题考查扇形统计图的读图和计算、条形统计图的绘图、简单概率的计算,掌握这些是本题关键.
33.(2021·山东青岛·中考真题)为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘.请用列表或画树状图的方法说明这个游戏是否公平.
【答案】不公平,见解析
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之积小于4的情况,再利用概率公式求出合唱《大海啊,故乡》和合唱《红旗飘飘》的概率,然后进行比较,即可得出答案.
【详解】解:根据题意画树状图如下:
∵共有12种等可能的结果,其中数字之积小于4的有5种结果,
∴合唱《大海啊,故乡》的概率是,
∴合唱《红旗飘飘》的概率是,
∵,
∴游戏不公平.
【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
34.(2021·山东日照·中考真题)为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组织学生参加《党史知识》测试(满分100分).为了解学生对党史知识的掌握程度,从七、八年级中各随机抽取10名学生的测试成绩,进行统计、分析,过程如下:
收集数据:
七年级:86 88 95 90 100 95 95 99 93 100
八年级:100 98 98 89 87 98 95 90 90 89
整理数据:
成绩x(分)
年级
85<x≤90
90<x≤95
95<x≤100
七年级
3
4
3
八年级
5
a
b
分析数据:
统计量
年级
平均数
中位数
众数
七年级
94.1
95
d
八年级
93.4
c
98
应用数据:
(1)填空:______,______,______,______;
(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数;
(3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.
【答案】(1)1,4,92.5,95;(2)80;(3)
【分析】(1)利用唱票的形式得到、的值,根据中位数的定义确定的值,根据众数的定义确定的值;
(2)用200乘以样本中八年级测试成绩大于95分所占的百分比即可;
(3)画树状图展示所有20种等可能的结果,找出两同学为同年级的结果数,然后根据概率公式求解.
【详解】解:(1),,
八年级成绩按由小到大排列为:87,89,89,90,90,95,98,98,98,100,
所以八年级成绩的中位数,
七年级成绩中95出现的次数最多,则;
故答案为1,4,92.5,95;
(2),
估计八年级测试成绩大于95分的人数为80人;
(3)画树状图为:
共有20种等可能的结果,其中两同学为同年级的结果数为8,
所以抽到同年级学生的概率.
【点睛】本题考查了列表法与树状图法:通过列表或树状图展示所有可能的结果求出,再从中选出符合事件或的结果数目,求出概率.也考查了统计图.
35.(2021·山东东营·中考真题)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有________名学生;
(2)补全折线统计图;
(3)D所对应扇形圆心角的大小为________;
(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
【答案】(1)50;(2)见解析;(3)108°;(4)
【分析】(1)用B组频数除以所占百分比即可求解;
(2)用50减去A、B、C组频数,求出D组频数,即可补全折线统计图;
(3)用360°乘以D组所占百分比即可求解;
(4)列表得出所有等可能结果,根据概率公式即可求解.
【详解】(1)20÷40%=50(人),
故答案为:50;
(2)50-10-20-5=15(人),
补全折线统计图如图:
;
(3),
故答案为:;
(4)列表如下:
小明
小丽
A
B
C
D
A
B
C
D
由列表可知,一共有16种等可能的结果,他们选择相同主题的结果有4种,
所以P(相同主题).
【点睛】本题考查了折线统计图与扇形统计图,求概率等知识,理解两幅统计图提供的公共信息是解题第(1)(2)(3)步关键,列表得出所有等可能的结果是解题第(4)步关键.
36.(2021·山东济宁·中考真题)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题:
(1)在这次调查中,“优秀”所在扇形的圆心角的度数是 ;
(2)请补全条形统计图;
(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是 ;
(4)已知“不合格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率多少?
【答案】(1);(2)补全条形统计图见详解;(3)510;(4)
【分析】(1)由乘以“优秀”的人数所占的比例即可;
(2)求出这次调查的人数为:(人),得出及格的人数,补全条形统计图即可;
(3)由该校总人数乘以“良好”的人数所占的比例即可;
(4)画树状图,共有6种等可能的结果,抽到两名男生的结果有2种,则由概率公式计算即可.
【详解】解:(1)在这次调查中,“优秀”
所在扇形的圆心角的度数是:,
故答案为:;
(2)这次调查的人数为:(人),
则及格的人数为:(人),
补全条形统计图如下:
;
(3)估计该校“良好”的人数为:
(人),
故答案为:510人;
(4)画树状图如图:
,
共有6种等可能的结果,
抽到两名都是男生的结果有2种,
∴抽到两名都是男生的概率为.
【点睛】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.解题是注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.
37.(2021·山东菏泽·中考真题)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)合格等级所占百分比为______%;不合格等级所对应的扇形圆心角为______度;
(3)从所抽取的优秀等级的学生、、……中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到、两位同学的概率.
【答案】(1)见解析;(2)30, (3)
【分析】(1)先根据良好等级所占的百分比求出总人数,
再根据总人数减去其他等级求出优秀的人数,补全统计图.
(2)用合格等级的人数除以总人数得百分比;
不合格等级的人数除以总数得百分比,再乘以,得对应的扇形圆心角度数.
(3)用列表法列举出所有可能,找出恰好抽到、两位同学的情形,利用概率的概念求得概率.
【详解】(1)总人数为:(人);
优秀人数为:(人).
(2)合格等级:.
不合格等级对应的扇形圆心角:.
(3)用列表法如图:
A
B
C
D
E
F
A
AB
AC
AD
AE
AF
B
BA
BC
BD
BE
BF
C
CA
CB
CD
CE
CF
D
DA
DB
DC
DE
DF
E
EA
EB
EC
ED
EF
F
FA
FB
FC
FD
FE
从表中可以看出,共有30种等情况数,符合题意选中、两位同学共2种.
恰好抽到、两位同学的概率为 .
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,用列表法或画树状图法求概率;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.能对图表信息进行具体分析和熟练掌握概率公式是解题关键.
38.(2021·山东泰安·中考真题)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:
竞赛成绩统计表(成绩满分100分)
组别
分数
人数
A组
4
B组
C组
10
D组
E组
14
合计
(1)本次共调查了________名学生;C组所在扇形的圆心角为________度;
(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?
(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到,的概率.
【答案】(1)50,72;(2)960人;(3)
【分析】(1)根据样本容量=样本中某项目的频数除以该项目所占的百分数,求得样本容量,利用圆心角度数=某项目所占的百分数乘以,计算即可;
(2)计算出各组的人数,利用样本估计总体的思想计算即可;
(3)利用画树状图法计算概率;
【详解】(1)∵样本容量=,
∴共有50人参与调查;
∴等级C组所对应的扇形的圆心角为:,
故答案为:50,72;
(2)B组人数:(人)
D组人数:(人)
该校优秀人数:(人)
(3)树状图
P(抽到,)
【点睛】本题考查了统计表,扇形统计图,样本容量,画树状图求概率,掌握统计图的意义,并能灵活运用画树状图法进行相关计算是解题的关键.
39.(2021·山东枣庄·中考真题)“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品 件,并补全条形统计图;
(2)在扇形统计图中,表示班的扇形周心角的度数为 ;
(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)
【答案】(1)抽样调查;24;条形统计图见解析;(2)150°;(3)恰好抽中一男一女的概率为.
【分析】(1)根据只抽取了4个班可知是抽样调查,根据A在扇形图中的角度求出所占的份数,再根据A的人数是4,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数,即可补全统计图
(2)利用C得数量除以总数再乘以360度,计算即可得解;
(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
【详解】(1)王老师采取的调查方式是抽样调查,
,
所以王老师所调查的4个班共征集到作品24件,
班的作品数为(件),
条形统计图为:
(2)在扇形统计图中,表示班的扇形周心角;
故答案为抽样调查;6;150°;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽中一男一女的结果数为6,
所以恰好抽中一男一女的概率.
【点睛】此题考查扇形统计图,列表法与树状图法,条形统计图,解题关键在于看懂图中数据
40.(2020·山东日照·中考真题)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.
(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是 ;众数是 ;
(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;
(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是 ;
(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.
【答案】(1)75,76;(2)30人;(3);(4),说明见解析.
【分析】(1)先把这组数据从小到大排列,然后直接得到中位数及众数;
(2)根据直方图得到80≤x<90范围内选取A课程的人数,然后直接进行求解即可;
(3)直接根据概率的求法进行求解即可;
(4)根据题意画出树状图,然后求解概率即可.
【详解】解:(1)在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76;
故答案为:75,76;
(2)观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,所占比为,
那么估计该年级100名学生,学生成绩在80≤x<90范围内,选取A课程的总人数为(人);
(3)因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,则他选中课程D的概率为;
故答案为:;
(4)因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:
等可能结果共有9种,他俩第二次同时选择课程A或课程B的有2种,
所以,他俩第二次同时选择课程A或课程B的概率是.
【点睛】本题主要考查数据分析及概率,关键是分析题目所给的数据,然后根据数据求解即可,画树状图及列举法是求概率常用的方法.
41.(2020·山东烟台·中考真题)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整;
(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.
【答案】(1)200名;(2)见解析;(3)树状图见解析,
【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;
(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;
(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.
【详解】解:(1)此次共调查的学生有:40÷=200(名);
(2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),
补全统计图如下:
(3)根据题意画树状图如下:
共用25种等可能的情况数,其中他俩选择不同项目的有20种,
则他俩选择不同项目的概率是=.
【点睛】本题考查的是扇形统计图,条形统计图和用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
42.(2020·山东威海·中考真题)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于,,,则小伟胜:若所得数值等于,,,则小梅胜
(1)请利用表格分别求出小伟、小梅获胜的概率
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性
【答案】(1)P(小伟胜)=,P(小梅胜)=;(2)游戏不公平;修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜.
【分析】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;
(2)依据获胜的概率判断游戏的公平性,修改规则时,利用差的绝对值的形式,使两人获胜的概率相等即可.
【详解】解:(1)用列表法表示所有可能出现的结果如下:
表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,
∴P(小伟胜)==,P(小梅胜)==,
答:小伟胜的概率是,小梅胜的概率是;
(2)∵≠,
∴游戏不公平;
根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,
于是修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜,这样小伟、小梅获胜的概率均为.
【点睛】此题主要考查了游戏的公平性,通过列举出所有的可能结果,求出相应的概率是解决问题的关键.
43.(2020·山东东营·中考真题)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.
作业情况
频数
频率
非常好
较好
一般
不好
请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了多少名学生?
(2)将统计表中所缺的数据填在表中横线上;
(3)若该中学有名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?
(4)某学习小组名学生的作业本中,有本“非常好”(记为),本“较好”(记为),本“一般”(记为),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.
【答案】(1);(2)见解析;(3)约名;(4).
【分析】(1)用72°除360°得到“不好”的学生人数的占比,然后再用40除以该百分比即可得到总共调查的学生人数;
(2)先算出“非常好”的人数,然后再用总分数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,最后分别用求出其人数除总人数得到其频率;
(3)先算出“非常好”和“较好”的学生的频率,再乘以1800即可求解;
(4)采用列表法将所有可能的情况列出,然后再用概率公式求解即可.
【详解】解:(1)由图形可知:72°占360°的百分比为,
故调查的总的学生人数为(名),
故答案为:200(名) .
(2)“非常好”的学生人数为:0.22×200=44(人),
总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,
故一般的人数为200-44-68-40=48,其频率为48÷200=0.24,
同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:
作业情况
频数
频率
非常好
较好
一般
不好
(3) “非常好”和“较好”的学生的频率为,
∴该校学生作业情况“非常好”和“较好”的学生一共约(名),
故答案为:;
(4)由题意知,列表如下:
第一次
第二次
由列表可以看出,一共有种结果,并且它们出现的可能性相等.
其中两次抽到的作业本都是“非常好”的有种,
∴两次抽到的作业本都是非常好的概率为,
故答案为:.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
44.(2020·山东潍坊·中考真题)在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t(单位:小时).把调查结果分为四档,A档:;B档:;C档:;D档:.根据调查情况,给出了部分数据信息:
①A档和D档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;
②图1和图2是两幅不完整的统计图.
根据以上信息解答问题:
(1)求本次调查的学生人数,并将图2补充完整;
(2)已知全校共1200名学生,请你估计全校B档的人数;
(3)学校要从D档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.
【答案】(1)40人,补全图形见解析;(2)480人;(3)
【分析】(1)用A档和D档所有数据数减去D档人数即可得到A档人数,用A档人数除以所占百分比即可得到总人数;用总人数减去A档,B档和D档人数,即可得到C档人数,从而可补全条统计图;
(2)先求出B档所占百分比,再乘以1200即可得到结论;
(3)分别用A,B,C,D表示四名同学,然后通过画树状图表示出所有等可能的结果数,再用概率公式求解即可.
【详解】(1)由于A档和D档共有12个数据,而D档有4个,
因此A档共有:12-4=8人,
8÷20%=40人,
补全图形如下:
(2)1200×(人)
答:全校B档的人数为480人,
(3)用A表示七年级学生,用B 表示八年级学生,用C和D分别表示九年级学生,画树状图如下,
所以P(2名学生来自不同年级)=
【点睛】本题考查条形统计图以及树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.
45.(2020·山东青岛·中考真题)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:,是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.
【答案】这个游戏对双方公平,理由见解析
【分析】画出树状图,求出配成紫色的概率即可求解.
【详解】解:这个游戏对双方公平,理由如下:
如图,
∵由树状图可知,所有可能发生的组合有6种,能配成紫色的组合有3种,
∴P(紫色)=,
∴这个游戏对双方公平.
【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.画出树状图,求出他们各自获胜的概率是解答本题的关键.
46.(2020·山东泰安·中考真题)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是_________名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角的度数;
(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
【答案】(1)80;(2)见解析;(3)72º;(4)图表见解析,
【分析】(1)根据题目中已知B的占比和人数已知,可求出总人数;
(2)用总人数减去其他人数可求出D的人数,然后补全条图即可;
(3)先算出A的占比,再用占比乘以360°即可;
(4)根据列表法进行求解即可;
【详解】(1)由题可知:(人),
∴参加学生的人数是80人;
(2)由(1)可得:D的人数为,画图如下:
(3)由(1)可得,A的占比是,
∴.
(4)列表如下:
C男
C女1
C女2
E男1
(C男,E男1)
(C女1,E男1)
(C女2,E男1)
E男2
(C男,E男2)
(C女1,E男2)
(C女2,E男2)
E女
(C男,E女)
(C女1,E女)
(C女2,E女)
得到所有等可能的情况有9种,
其中满足条件的有5种:(C女1,E男1),(C女2,E男1),(C女1,E男2),C女2,E男2),(C男,E女)
所以所选两名同学中恰好是1名男生1名女生的概率是.
【点睛】本题主要考查了条形统计图与扇形统计图的结合,在解题过程中准确理解题意,列表格求概率是关键.
47.(2020·山东德州·中考真题)某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;
(2)补全图2频数直方图;
(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;
(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.
【答案】(1)50,36%;(2)见解析;(3)能获奖.理由见解析;(4)
【分析】(1)用“89.5~99.5”的人数和除以它们所占的百分比得到调查的总人数,再计算出“59.5~69.5”这两组所占的百分比,然后计算出“79.5~89.5”所占的百分比;
(2)根据“69.5~79.5”所占的百分比可求得“69.5~74.5”的人数,根据“79.5~89.5”所占的百分比可求得“79.5~84.5”的人数,从而补全统计图;
(3)计算出前40%有20人,恰好落在“84.5~99.5” 这一范围,从而可判断他能获奖;
(4)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.
【详解】(1)“89.5~99.5”的人数和它们所占的百分比分别是:(8+4)人和24%,
∴总人数为:(人),
“59.5~69.5”的人数是5人,所占百分比是:,
∴“79.5~89.5”所占的百分比是:1-24%-10%-30%=36%,
故答案为:50,36%;
(2)∵“69.5~79.5” 的人数是:5030%=15(人),
∴“69.5~74.5”的人数是:15-8=7(人),
“79.5~89.5” 的人数是:5036%=18(人),
∴“79.5~84.5”的人数是:18-8=10(人),
补全条形图如图所示:
(3)能获奖.理由:
因为本次参赛选手共50人,所以前40%的人数为(人)
由频数直方图可得84.5~99.5这一范围人数恰好人,
又,所以能获奖;
(4)画树状图为:
由树状图可知共有12种等可能的结果,恰好选中一男一女为主持人的结果有8种,
所以P(一男一女为主持人).
答:恰好选中一男一女为主持人的概率为.
【点睛】本题考查了条形统计图和扇形统计图的综合运用以及列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
48.(2020·山东济宁·中考真题)某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).
(1)统计表中,a=________, b =________;
(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.
【答案】(1)96,96;(2)
【分析】(1)分别将两个班级的成绩罗列出来,再根据众数和中位数的概念解答即可;
(2)设八(1)班98分的学生分别为A,B,八(2)班98分的学生分别为D、C、E,将所有情况列出,再得出符合条件的个数,利用概率公式求解.
【详解】解:(1)由图可知:
八(1)班学生成绩分别为:100、92、98、96、88、96、89、98、96、92,
∴八(1)班的众数为:96,即a=96,
八(2)班学生成绩分别为:89、98、93、98、95、97、91、90、98、99,
从小到大排列为:89、90、91、93、95、97、98、98、98、99,
八(2)班的中位数为:(95+97)÷2=96,即b=96;
故答案为:96;96;
(2)设八(1)班98分的学生分别为A,B,八(2)班98分的学生分别为D、C、E,
可知共有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)10种情况,
其中满足另外两个决赛名额落在不同班级的情况有(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),共6种,
∴另外两个决赛名额落在不同班级的概率为.
【点睛】本题考查了中位数和众数,列举法求概率,解题的关键是理解题意,掌握中位数和众数的求法和概率公式的运用.
2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷),文件包含专题18概率-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题18概率-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
2020-2022年山东中考数学3年真题汇编 专题24 统计(学生卷+教师卷): 这是一份2020-2022年山东中考数学3年真题汇编 专题24 统计(学生卷+教师卷),文件包含专题24统计-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题24统计-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
2020-2022年山东中考数学3年真题汇编 专题19 与圆有关的压轴题(学生卷+教师卷): 这是一份2020-2022年山东中考数学3年真题汇编 专题19 与圆有关的压轴题(学生卷+教师卷),文件包含专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用解析版docx、专题19与圆有关的压轴题-三年2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。