专题10 二次函数-将军饮马求最小值(平移)-备战2023年中考数学压轴题 之二次函数篇(无答案)
展开第十讲 二次函数--将军饮马求最值(平移)
目录
必备知识点
考点一 平移
考点二 平移+对称
必备知识点
已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)
(1)点A、B在直线m两侧:
过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。
(2)点A、B在直线m同侧:
过A点作AE∥m,且AE长等于PQ长,作B关于m的对称点B’,连接B’E,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。
考点一 平移
1.如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
(1)直接写出A,B,C三点的坐标;
(2)求CP+PQ+QB的最小值;
2.如图1,抛物线y=ax2+bx+c经过点A(0,2)、B(﹣1,0)、C(4,0).点M为抛物线的顶点.
(1)直接写出抛物线的解析式;
(2)如图2,点Q为抛物线y=ax2+bx+c第四象限上的一点,若△ACQ与△ABC的面积相等,求点Q的坐标;
(3)在(2)的条件下,点P为抛物线上的点,过点P作y轴的平行线,分别与x轴、直线y=2交于点K、N,连接MN、QK,探究MN+NK+QK是否存在最小值时,若存在,求出点P的横坐标并直接写出这个最小值;若不存在,请你说明理由.
考点二 平移+对称
3.如图所示,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(﹣2,0),O(0,0),B(0,4),把△AOB绕点O按顺时针方向旋转90°,得到△COD.
(1)求C、D两点的坐标;
(2)求经过A、B、D三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF的周长最小,求出E、F两点的坐标.
4.已知:抛物线y=﹣x2+bx+c(b,c为常数),经过点A(﹣2,0),C(0,4),点B为抛物线与x轴的另一个交点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;
(Ⅲ)设点M,N是该抛物线对称轴上的两个动点,且MN=2,点M在点N下方,求四边形AMNC周长的最小值.
5.如图1,抛物线y=﹣x+3与x轴交于A、B两点,与y轴交于点C,连接AC、BC.
(1)求线段AC的长;
(2)如图2,E为抛物线的顶点,F为AC上方的抛物线上一动点,M、N为直线AC上的两动点(M在N的左侧),且MN=4,作FP⊥AC于点P,FQ∥y轴交AC于点Q.当△FPQ的面积最大时,连接EF、EN、FM,求四边形ENMF周长的最小值.
6.如图1,抛物线y=x与x轴交于点A,B(A在B左边),与y轴交于点C,连AC,点D与点C关于抛物线的对称轴对称,过点D作DE∥AC交抛物线于点E,交y轴于点P.
(1)点F是直线AC下方抛物线上点一动点,连DF交AC于点G,连EG,当△EFG的面积的最大值时,直线DE上有一动点M,直线AC上有一动点N,满足MN⊥AC,连GM,NO,求GM+MN+NO的最小值;
7.如图①,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点D,且3OC=4OB,对称轴为直线x=,点,连接CE交对称轴于点F,连接AF交抛物线于点G.
(1)求抛物线的解析式和直线CE的解析式;
(2)如图②,过E作EP⊥x轴交抛物线于点P,点Q是线段BC上一动点,当QG+QB最小时,线段MN在线段CE上移动,点M在点N上方,且MN=,请求出四边形PQMN周长最小时点N的横坐标;
8.如图,抛物线y=x2+x﹣交x轴于点A、B.交y轴于点C.
(1)求直线AC的解析式,
(2)若P为直线AC下方抛物线上一动点,连接AP、CP,以PC 为对角线作平行四边形ACDP,当平行四边形ACDP面积最大时,作点C关于x轴的对称点Q,此时线段MN在直线AQ上滑动(M在N 的左侧),MN=,连接BN,PM,求BN+NM+MP的最小值及平行四边形ACDP 的最大面积;
9.如图,平面直角坐标系中,正方形ABCD的顶点A,B在x轴上,抛物线y=﹣x2+bx+c经过A,C(4,﹣5)两点,且与直线DC交于另一点E.
(1)求抛物线的解析式;
(2)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为Q,连接EQ,AP.试求EQ+PQ+AD的最小值;
10.如图,抛物线y=x2﹣2x﹣6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点D为顶点,点E在抛物线上,且横坐标为4,AE与y轴交F.
(1)求抛物线的顶点D和F的坐标;
(2)点M、N是抛物线对称轴上两点,且M(2,a),N(2,a+),是否存在a使F,C,M,N四点所围成的四边形周长最小,若存在,求出这个周长最小值,并求出a的值;
11.如图,过点A(5,)的抛物线y=ax2+bx的对称轴是直线x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.
(1)求a、b的值;
(2)当△BCD是直角三角形时,求△OBC的面积;
(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.
12.如图1,已知抛物线y=x2+2x﹣3与x轴相交于A,B两点,与y轴交于点C,D为顶点.
(1)求直线AC的解析式和顶点D的坐标;
(2)已知E(0,),点P是直线AC下方的抛物线上一动点,作PR⊥AC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接A、M、N、P构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;
中考数学压轴题满分突破训练 专题10 二次函数-将军饮马求最小值(平移): 这是一份中考数学压轴题满分突破训练 专题10 二次函数-将军饮马求最小值(平移),文件包含专题10二次函数-将军饮马求最小值平移解析版docx、专题10二次函数-将军饮马求最小值平移原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
中考数学压轴题满分突破训练 专题09 二次函数-将军饮马求最小值(对称): 这是一份中考数学压轴题满分突破训练 专题09 二次函数-将军饮马求最小值(对称),文件包含专题09二次函数-将军饮马求最小值对称解析版docx、专题09二次函数-将军饮马求最小值对称原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专题03 将军饮马求最小值2-平移-中考数学压轴题满分突破之二次函数篇(全国通用): 这是一份专题03 将军饮马求最小值2-平移-中考数学压轴题满分突破之二次函数篇(全国通用),文件包含专题03将军饮马求最小值2-平移解析版doc、专题03将军饮马求最小值2-平移原卷版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。