陕西省商洛市商南县重点中学2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )
A.1 B.2 C.3 D.4
2.计算﹣8+3的结果是( )
A.﹣11 B.﹣5 C.5 D.11
3.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
5.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为( )
A.3122×10 8元 B.3.122×10 3元
C.3122×10 11 元 D.3.122×10 11 元
6.若代数式有意义,则实数x的取值范围是( )
A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
7.﹣的相反数是( )
A.8 B.﹣8 C. D.﹣
8.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
9.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
10.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若,则=_____.
12.化简:=_____.
13.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
14.与直线平行的直线可以是__________(写出一个即可).
15.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.
16.不等式组的最大整数解是__________.
17.分解因式:=______.
三、解答题(共7小题,满分69分)
18.(10分)观察规律并填空.
______(用含n的代数式表示,n 是正整数,且 n ≥ 2)
19.(5分)解分式方程:
20.(8分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
21.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
22.(10分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.
23.(12分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求该反比例函数的解析式;
(1)求三角形CDE的面积.
24.(14分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴,
∴,
∴S△ABC=4,
∴S△BCD= S△ABC- S△ACD=4-1=1.
故选C
考点:相似三角形的判定与性质.
2、B
【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.
【详解】
解:−8+3=−2.
故选B.
【点睛】
考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.
3、D
【解析】
求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.
【详解】
抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,
纵坐标为:y==﹣2a﹣,
∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,
∴抛物线的顶点经过一二三象限,不经过第四象限,
故选:D.
【点睛】
本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.
4、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
5、D
【解析】
可以用排除法求解.
【详解】
第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
【点睛】
牢记科学记数法的规则是解决这一类题的关键.
6、D
【解析】
试题分析:∵代数式有意义,
∴,
解得x≥0且x≠1.
故选D.
考点:二次根式,分式有意义的条件.
7、C
【解析】
互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,
故选C.
8、B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
9、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
10、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
=.
12、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,故答案为.
【点睛】
本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
13、
【解析】
利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
【详解】
∵圆锥的底面圆的周长是,
∴圆锥的侧面扇形的弧长为 cm,
,
解得:
故答案为.
【点睛】
此题考查弧长的计算,解题关键在于求得圆锥的侧面积
14、y=-2x+5(答案不唯一)
【解析】
根据两条直线平行的条件:k相等,b不相等解答即可.
【详解】
解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
故答案为y=2x+1.(提示:满足的形式,且)
【点睛】
本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
15、
【解析】
分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC
为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.
详解:如图1,连接AO,
∵AB=AC,点O是BC的中点,
∴AO⊥BC,
又∵
∴
∴
∴弧BC的长为:(m),
∴将剪下的扇形围成的圆锥的半径是:
(m),
∴圆锥的高是:
故答案为.
点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.
16、
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
解:,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,1,
则该不等式组的最大整数解是x=1.
故答案为:1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
17、x(x+2)(x﹣2).
【解析】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
三、解答题(共7小题,满分69分)
18、
【解析】
由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
【详解】
=
=
=.
故答案为:.
【点睛】
本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
19、无解
【解析】
首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.
【详解】
解:两边同乘以(x+2)(x-2)得:
x(x+2)-(x+2)(x-2)=8
去括号,得:+2x-+4=8
移项、合并同类项得:2x=4
解得:x=2
经检验,x=2是方程的增根
∴方程无解
【点睛】
本题考查解分式方程,注意分式方程结果要检验.
20、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
【解析】
分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
详(1)证明:如图1中,
∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC,
∴BD=EC.
(2)证明:如图2中,延长DC到E,使得DB=DE.
∵DB=DE,∠BDC=60°,
∴△BDE是等边三角形,
∴∠BD=BE,∠DBE=∠ABC=60°,
∴∠ABD=∠CBE,
∵AB=BC,
∴△ABD≌△CBE,
∴AD=EC,
∴BD=DE=DC+CE=DC+AD.
∴AD+CD=BD.
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.
由(1)可知△EAB≌△GAC,
∴∠1=∠2,BE=CG,
∵BD=DC,∠BDE=∠CDM,DE=DM,
∴△EDB≌△MDC,
∴EM=CM=CG,∠EBC=∠MCD,
∵∠EBC=∠ACF,
∴∠MCD=∠ACF,
∴∠FCM=∠ACB=∠ABC,
∴∠1=3=∠2,
∴∠FCG=∠ACB=∠MCF,
∵CF=CF,CG=CM,
∴△CFG≌△CFM,
∴FG=FM,
∵ED=DM,DF⊥EM,
∴FE=FM=FG,
∵AE=AG,AF=AF,
∴△AFE≌△AFG,
∴∠EAF=∠FAG=m°.
点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
21、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
22、 (1)见解析;(2)顶点为(,﹣)
【解析】
(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;
(2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.
【详解】
(1)证明:a=1,b=﹣(2m+1),c=m2+m,
∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,
∴抛物线与x轴有两个不相同的交点.
(2)解:∵y=x2﹣(2m+1)x+m2+m,
∴对称轴x=﹣==,
∵对称轴为直线x=,
∴=,
解得m=2,
∴抛物线解析式为y=x2﹣5x+6,
∵y=x2﹣5x+6=(x﹣)2﹣,
∴顶点为(,﹣ ).
【点睛】
本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.
23、(1);(1)11.
【解析】
(1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
【详解】
解:(1)∵tan∠ABO=,OB=4,
∴OA=1,
∵OE=1,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即点C的坐标为(﹣1,3),
∴反比例函数的解析式为:;
(1)设直线AB的解析式为:y=kx+b,
则,
解得,,
则直线AB的解析式为:,
,
解得,,,
∴当D的坐标为(6,1),
∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
=×6×3+×6×1
=11.
【点睛】
此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.
24、 (1)-2 (2)-
【解析】
试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
(2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)•(a2﹣b2)
=•(a+b)(a﹣b)
=a+b,
当a=,b=﹣2时,原式=+(﹣2)=﹣.
2023年陕西省商洛市商南县湘河初级中学中考数学模拟试卷(三)(含解析): 这是一份2023年陕西省商洛市商南县湘河初级中学中考数学模拟试卷(三)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省商洛市商南县2021-2022学年中考四模数学试题含解析: 这是一份陕西省商洛市商南县2021-2022学年中考四模数学试题含解析,共18页。试卷主要包含了关于的叙述正确的是等内容,欢迎下载使用。
2022年陕西省商洛重点中学中考数学模拟预测题含解析: 这是一份2022年陕西省商洛重点中学中考数学模拟预测题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。