|试卷下载
搜索
    上传资料 赚现金
    陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析
    立即下载
    加入资料篮
    陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析01
    陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析02
    陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析

    展开
    这是一份陕西省工大、铁一、交大重点达标名校2022年中考二模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,比较4,,的大小,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    2.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为(  )

    A.73 B.81 C.91 D.109
    3.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )

    A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
    4.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4
    C. D.(a2b)3=a5b3
    5.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )

    A. B. C. D.12
    6.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )

    A. B.
    C. D.
    7.数据4,8,4,6,3的众数和平均数分别是( )
    A.5,4 B.8,5 C.6,5 D.4,5
    8.如果m的倒数是﹣1,那么m2018等于(  )
    A.1 B.﹣1 C.2018 D.﹣2018
    9.比较4,,的大小,正确的是(  )
    A.4<< B.4<<
    C.<4< D.<<4
    10.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )

    A.-2 B.2 C.-4 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.
    12.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.
    13.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).
    14.估计无理数在连续整数___与____之间.
    15.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.
    16.如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.
    (1)求证:;
    (2)设,的面积为,的面积为,求(用含的式子表示);
    (3)如图2,若点为边的中点,求证: .

    图1 图2
    18.(8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
    19.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
    请根据图表信息回答下列问题:
    视力
    频数(人)
    频率
    4.0≤x<4.3
    20
    0.1
    4.3≤x<4.6
    40
    0.2
    4.6≤x<4.9
    70
    0.35
    4.9≤x<5.2
    a
    0.3
    5.2≤x<5.5
    10
    b
    (1)本次调查的样本为   ,样本容量为   ;在频数分布表中,a=   ,b=   ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?

    20.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
    (1)试判断CD与圆O的位置关系,并说明理由;
    (2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.

    21.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:

    (1)该调查小组抽取的样本容量是多少?
    (2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
    (3)请估计该市中小学生一天中阳光体育运动的平均时间.
    22.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
    23.(12分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:
    (1)收集、整理数据:
    从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:
    B D E A C E D B F C D D D B E C D E E F
    A F F A D C D B D F C F D E C E E E C E
    并将上述数据整理在如下的频数分布表中,请你补充其中的数据:
    志愿服务时间
    A
    B
    C
    D
    E
    F
    频数
    3
    4
       
    10
       
    7
    (2)描述数据:
    根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;
    (3)分析数据:
    ①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;
    ②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为   人;
    (4)问题解决:
    校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.

    24.如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
    (1)求证:直线CD是⊙O的切线;
    (2)若DE=2BC,AD=5,求OC的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    2、C
    【解析】
    试题解析:第①个图形中一共有3个菱形,3=12+2;
    第②个图形中共有7个菱形,7=22+3;
    第③个图形中共有13个菱形,13=32+4;
    …,
    第n个图形中菱形的个数为:n2+n+1;
    第⑨个图形中菱形的个数92+9+1=1.
    故选C.
    考点:图形的变化规律.
    3、C
    【解析】
    根据平行线性质和全等三角形的判定定理逐个分析.
    【详解】
    由,得∠B=∠D,
    因为,
    若≌,则还需要补充的条件可以是:
    AB=DE,或∠E=∠A, ∠EFD=∠ACB,
    故选C
    【点睛】
    本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
    4、B
    【解析】
    由整数指数幂和分式的运算的法则计算可得答案.
    【详解】
    A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
    B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
    C项,根据分式的加法法则可得:,故C项错误;
    D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
    故本题正确答案为B.
    【点睛】
    幂的运算法则:
    (1) 同底数幂的乘法: (m、n都是正整数)
    (2)幂的乘方:(m、n都是正整数)
    (3)积的乘方: (n是正整数)
    (4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
    (5)零次幂:(a≠0)
    (6) 负整数次幂: (a≠0, p是正整数).
    5、C
    【解析】
    设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
    【详解】
    ∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,
    设B点的坐标为(a,b),
    ∵BD=3AD,
    ∴D(,b),
    ∵点D,E在反比例函数的图象上,
    ∴=k,
    ∴E(a, ),
    ∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
    ∴k=,
    故选:C
    【点睛】
    考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
    6、B
    【解析】
    根据图示,可得:b<0<a,|b|>|a|,据此判断即可.
    【详解】
    ∵b<0<a,|b|>|a|,
    ∴a+b<0,
    ∴|a+b|= -a-b.
    故选B.
    【点睛】
    此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.
    7、D
    【解析】
    根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
    【详解】
    ∵4出现了2次,出现的次数最多,
    ∴众数是4;
    这组数据的平均数是:(4+8+4+6+3)÷5=5;
    故选D.
    8、A
    【解析】
    因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
    然后再代入m2018计算即可.
    【详解】
    因为m的倒数是﹣1,
    所以m=-1,
    所以m2018=(-1)2018=1,故选A.
    【点睛】
    本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
    9、C
    【解析】
    根据4=<且4=>进行比较
    【详解】
    解:易得:4=<且4=>,
    所以<4<
    故选C.
    【点睛】
    本题主要考查开平方开立方运算。
    10、C
    【解析】
    根据反比例函数k的几何意义,求出k的值即可解决问题
    【详解】
    解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
    ∴||=2,
    ∵k<0,
    ∴k=-1.
    故选:C.
    【点睛】
    本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、90°.
    【解析】
    根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.
    【详解】
    解:∵∠A+∠B+∠C=180°,∠C=30°,
    ∴∠A+∠B+=150°,
    ∵∠A﹣∠B=30°,
    ∴2∠A=180°,
    ∴∠A=90°.
    故答案为:90°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
    12、﹣1<a<1
    【解析】
    解:∵k>0,
    ∴在图象的每一支上,y随x的增大而减小,
    ①当点(a-1,y1)、(a+1,y2)在图象的同一支上,
    ∵y1<y2,
    ∴a-1>a+1,
    解得:无解;
    ②当点(a-1,y1)、(a+1,y2)在图象的两支上,
    ∵y1<y2,
    ∴a-1<0,a+1>0,
    解得:-1<a<1.
    故答案为:-1<a<1.
    【点睛】
    本题考查反比例函数的性质.
    13、或
    【解析】
    当F在边AB上时,如图1作辅助线,先证明≌,得,,根据正切的定义表示即可;
    当F在BA的延长线上时,如图2,同理可得:≌,表示AF的长,同理可得结论.
    【详解】
    解:分两种情况:
    当F在边AB上时,如图1,

    过E作,交AB于G,交DC于H,
    四边形ABCD是正方形,
    ,,,
    ,,


    ≌,



    中,,
    即;
    当F在BA的延长线上时,如图2,

    同理可得:≌,



    中,.
    【点睛】
    本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论.
    14、3 4
    【解析】
    先找到与11相邻的平方数9和16,求出算术平方根即可解题.
    【详解】
    解:∵,
    ∴,
    ∴无理数在连续整数3与4之间.
    【点睛】
    本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
    15、12
    【解析】
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.
    【详解】
    ∵摸到红球的频率稳定在0.25,

    解得:a=12
    故答案为:12
    【点睛】
    此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.
    16、(,)
    【解析】
    分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a>0),由可求出a值,进而得到点A的坐标.
    详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.

    ∵△ABC为等腰直角三角形,
    ∴OA=OC,OC⊥AB,
    ∴∠AOE+∠COF=90°.
    ∵∠COF+∠OCF=90°,
    ∴∠AOE=∠OCF.
    在△AOE和△OCF中,

    ∴△AOE≌△OCF(AAS),
    ∴AE=OF,OE=CF.
    ∵BP平分∠ABC,
    ∴,
    ∴.
    设点A的坐标为(a,),
    ∴,
    解得:a=或a=-(舍去),
    ∴=,
    ∴点A的坐标为(,),
    故答案为:((,)).
    点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(1)详见解析;(3)详见解析.
    【解析】
    (1)根据两角对应相等的两个三角形相似即可判断;
    (1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;
    (3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;
    【详解】
    (1)证明:如图1中,

    在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
    ∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
    ∵∠EDF=∠B,
    ∴∠DEB=∠FDC,
    又∠B=∠C,
    ∴△BDE∽△CFD.

    (1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,

    S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,
    ∴S1•S1=ab•BE•CF
    由(1)得△BDE∽△CFD,
    ∴,即BE•FC=BD•CD=ab,
    ∴S1•S1=a1b1.
    (3)由(1)得△BDE∽△CFD,
    ∴,
    又BD=CD,
    ∴,
    又∠EDF=∠C=60°,
    ∴△DFE∽△CFD,
    ∴,即DF1=EF•FC.
    【点睛】
    本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.
    18、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.
    【解析】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.
    【详解】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,
    根据题意得:,
    解得:x=900,
    经检验,x=900是原分式方程的解,
    答:二月份每辆车售价是900元;
    (2)设每辆山地自行车的进价为y元,
    根据题意得:900×(1﹣10%)﹣y=35%y,
    解得:y=600,
    答:每辆山地自行车的进价是600元.
    【点睛】
    本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    19、200名初中毕业生的视力情况 200 60 0.05
    【解析】
    (1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
    (2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
    (3)求出样本中视力正常所占百分比乘以5000即可得解.
    【详解】
    (1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
    故答案为200;
    (2)a=200×0.3=60,b=10÷200=0.05,
    补全频数分布图,如图所示,
    故答案为60,0.05;
    (3)根据题意得:5000×=3500(人),
    则全区初中毕业生中视力正常的学生有估计有3500人.
    20、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
    【解析】
    (1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
    (2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
    【详解】
    (1)CD与圆O的位置关系是相切,
    理由是:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠CAB,
    ∵∠CAB=∠CAD,
    ∴∠OCA=∠CAD,
    ∴OC∥AD,
    ∵CD⊥AD,
    ∴OC⊥CD,
    ∵OC为半径,
    ∴CD与圆O的位置关系是相切;
    (2)连接BC,

    ∵AB是⊙O的直径,
    ∴∠BCA=90°,
    ∵圆O的半径为3,
    ∴AB=6,
    ∵∠CAB=30°,

    ∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
    ∴△CAB∽△DAC,



    【点睛】
    本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
    21、(4)500;(4)440,作图见试题解析;(4)4.4.
    【解析】
    (4)利用0.5小时的人数除以其所占比例,即可求出样本容量;
    (4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;
    (4)计算出该市中小学生一天中阳光体育运动的平均时间即可.
    【详解】
    解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,
    ∴本次调查共抽样了500名学生;
    (4)4.5小时的人数为:500×4.4=440(人),如图所示:

    (4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.
    考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.
    22、足球单价是60元,篮球单价是90元.
    【解析】
    设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
    【详解】
    解:足球的单价分别为x元,篮球单价是1.5x元,
    可得:,
    解得:x=60,
    经检验x=60是原方程的解,且符合题意,
    1.5x=1.5×60=90,
    答:足球单价是60元,篮球单价是90元.
    【点睛】
    本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
    23、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).
    【解析】
    (1)观察统计图即可得解;
    (2)根据题意作图;
    (3)①根据两个统计图解答即可;
    ②根据图1先算出不足10小时的概率再乘以200人即可;
    (4)根据题意画出树状图即可解答.
    【详解】
    解:(1)C的频数为7,E的频数为9;
    故答案为7,9;
    (2)补全频数直方图为:

    (3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;
    ②200×=35,
    所以估计九年级200名团员中参加此次义务劳动的人数约为35人;
    故答案为35;
    (4)画树状图为:

    共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,
    所以两人恰好选在同一个服务点的概率==.
    【点睛】
    本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.
    24、(1)证明见解析;(2).
    【解析】
    试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
    (2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
    试题解析:(1)连结DO.

    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB. 3分
    又∵CO=CO, OD=OB
    ∴△COD≌△COB(SAS) 4分
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线.
    (2)∵△COD≌△COB.
    ∴CD=CB.
    ∵DE=2BC,
    ∴ED=2CD.
    ∵AD∥OC,
    ∴△EDA∽△ECO.
    ∴,
    ∴.
    考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.

    相关试卷

    陕西省工大、铁一、交大2023-2024学年数学九年级第一学期期末调研模拟试题含答案: 这是一份陕西省工大、铁一、交大2023-2024学年数学九年级第一学期期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,桌面上放有6张卡片,已知,是抛物线上两点,则正数,若点A等内容,欢迎下载使用。

    2023-2024学年陕西省工大、铁一、交大数学八上期末复习检测模拟试题含答案: 这是一份2023-2024学年陕西省工大、铁一、交大数学八上期末复习检测模拟试题含答案,共6页。试卷主要包含了若分式的值不存在,则的值是,如图,图形中,具有稳定性的是等内容,欢迎下载使用。

    2022-2023学年陕西省工大、铁一、交大数学七下期末复习检测模拟试题含答案: 这是一份2022-2023学年陕西省工大、铁一、交大数学七下期末复习检测模拟试题含答案,共6页。试卷主要包含了下列各式中,运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map