山西省运城市万荣县重点中学2021-2022学年中考数学对点突破模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于( )
A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5
2.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )
A.0.3 B.0.4 C.0.5 D.0.6
3.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.
A.1 B.2 C.1 D.4
4.﹣22×3的结果是( )
A.﹣5 B.﹣12 C.﹣6 D.12
5.下列命题中错误的有( )个
(1)等腰三角形的两个底角相等
(2)对角线相等且互相垂直的四边形是正方形
(3)对角线相等的四边形为矩形
(4)圆的切线垂直于半径
(5)平分弦的直径垂直于弦
A.1 B.2 C.3 D.4
6.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩
人数(频数)
百分比(频率)
0
5
0.2
10
5
15
0.4
20
5
0.1
根据表中已有的信息,下列结论正确的是( )
A.共有40名同学参加知识竞赛
B.抽到的同学参加知识竞赛的平均成绩为10分
C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D.抽到同学参加知识竞赛成绩的中位数为15分
7.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
A.∠EDB B.∠BED C.∠EBD D.2∠ABF
8.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
9.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A.3 B.4﹣ C.4 D.6﹣2
10.7的相反数是( )
A.7 B.-7 C. D.-
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.
12.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.
13.如图,为的直径,与相切于点,弦.若,则______.
14.64的立方根是_______.
15.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
16.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
(1)求直线AB的解析式;
(2)根据图象写出当y1>y2时,x的取值范围;
(3)若点P在y轴上,求PA+PB的最小值.
18.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
19.(8分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?
20.(8分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.求证:四边形ADCE是矩形;①若AB=17,BC=16,则四边形ADCE的面积= .
②若AB=10,则BC= 时,四边形ADCE是正方形.
21.(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.
22.(10分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
23.(12分)已知:如图,,,.求证:.
24.解方程.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.
【详解】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.
【点睛】
考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
2、C
【解析】
用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
【详解】
仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
所以,频率==0.1.
故选C.
【点睛】
本题考查了频数与频率,频率=.
3、D
【解析】
①根据作图的过程可知,AD是∠BAC的平分线.故①正确.
②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.
又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,
∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.
③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.
∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.
∴S△ABC=AC•BC=AC•AD=AC•AD.
∴S△DAC:S△ABC.故④正确.
综上所述,正确的结论是:①②③④,,共有4个.故选D.
4、B
【解析】
先算乘方,再算乘法即可.
【详解】
解:﹣22×3=﹣4×3=﹣1.
故选:B.
【点睛】
本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.
5、D
【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
详解:等腰三角形的两个底角相等,(1)正确;
对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
对角线相等的平行四边形为矩形,(3)错误;
圆的切线垂直于过切点的半径,(4)错误;
平分弦(不是直径)的直径垂直于弦,(5)错误.
故选D.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
6、B
【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
【详解】
∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
∵0分同学10人,其频率为0.2,
∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
∵第25、26名同学的成绩为10分、15分,
∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
故选:B.
【点睛】
本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
7、C
【解析】
根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.
【详解】
在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.
【点睛】
.
本题主要考查全等三角形的判定与性质,熟悉掌握是关键.
8、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
9、B
【解析】
分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
详解:如图,当点E旋转至y轴上时DE最小;
∵△ABC是等边三角形,D为BC的中点,
∴AD⊥BC
∵AB=BC=2
∴AD=AB•sin∠B=,
∵正六边形的边长等于其半径,正六边形的边长为2,
∴OE=OE′=2
∵点A的坐标为(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故选B.
点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
10、B
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
7的相反数是−7,
故选:B.
【点睛】
此题考查相反数,解题关键在于掌握其定义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(2,2)
【解析】
分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可.
详解:与是以点为位似中心的位似图形,,
,若点的坐标是,
过点作交于点E.
点的坐标为:
与的相似比为,
点的坐标为:即点的坐标为:
故答案为:
点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.
12、50°
【解析】【分析】直接利用圆周角定理进行求解即可.
【详解】∵弧AB所对的圆心角是100°,
∴弧AB所对的圆周角为50°,
故答案为:50°.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
13、1
【解析】
利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
【详解】
∵与相切于点,
∴AC⊥AB,
∴,
∴,
∵,
∴,,
∵,
∴,
∴.
故答案为1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
14、4.
【解析】
根据立方根的定义即可求解.
【详解】
∵43=64,
∴64的立方根是4
故答案为4
【点睛】
此题主要考查立方根的定义,解题的关键是熟知立方根的定义.
15、8
【解析】
【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
【详解】∵四边形ACDF是正方形,
∴AC=FA,∠CAF=90°,
∴∠CAE+∠FAB=90°,
∵∠CEA=90°,∴∠CAE+∠ACE=90°,
∴∠ACE=∠FAB,
又∵∠AEC=∠FBA=90°,
∴△AEC≌△FBA,
∴CE=AB=4,
∴S阴影==8,
故答案为8.
【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
16、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.
【详解】
∵线段c是线段a和线段b的比例中项,
∴,
解得(线段是正数,负值舍去),
∴,
故答案为:1.
【点睛】
本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.
三、解答题(共8题,共72分)
17、(1)y=﹣x+4;(2)1<x<1;(1)2.
【解析】
(1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
(2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
(1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
【详解】
(1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
m=1,n=1,
∴A(1,1)、B(1,1),
把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
,解得,
∴直线AB的解析式为y=-x+4;
(2)观察函数图象,发现:
当1<x<1时,正比例函数图象在反比例函数图象的上方,
∴当y1>y2时,x的取值范围是1<x<1.
(1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
过C作y轴的平行线,过B作x轴的平行线,交于点D,则
Rt△BCD中,BC=,
∴PA+PB的最小值为2.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
18、(1);(2)
【解析】
分析:(1)直接利用概率公式求解;
(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.
详解:(1)甲队最终获胜的概率是;
(2)画树状图为:
共有8种等可能的结果数,其中甲至少胜一局的结果数为7,
所以甲队最终获胜的概率=.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
19、裁掉的正方形的边长为2dm,底面积为12dm2.
【解析】
试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
试题解析:
设裁掉的正方形的边长为xdm,
由题意可得(10-2x)(6-2x)=12,
即x2-8x+12=0,解得x=2或x=6(舍去),
答:裁掉的正方形的边长为2dm,底面积为12dm2.
20、 (1)见解析;(2)①1; ②.
【解析】
试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;
(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;
②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.
试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE是矩形.
(2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四边形ADCE的面积是AD×DC=12×8=1.
②当BC=时,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.
点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.
21、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=﹣x+1.(2)2.
【解析】
(1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;
(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.
【详解】
(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).
把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+1.
(2)如图,设直线y=﹣x+1与x轴交于C,则C(2,0).
S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.
【点睛】
本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.
22、(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
23、见解析
【解析】
先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.
【详解】
证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS).
∴BC=DE.
【点睛】
本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.
24、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
【点睛】
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析: 这是一份山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。
赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算中正确的是,的相反数是,已知等内容,欢迎下载使用。
2021-2022学年山西省运城市运康中学中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年山西省运城市运康中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,双曲线y=,如图,立体图形的俯视图是等内容,欢迎下载使用。