山西省晋城市陵川县达标名校2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )
A.5 B.6 C.8 D.12
3.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
4.如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )
A. B.
C. D.
5.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A. B. C.且 D.
6.如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )
A. B. C. D.
7.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30° B.45°
C.90° D.135°
8.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )
A.2 B.3 C.4 D.5
9.的相反数是( )
A.2 B.﹣2 C.4 D.﹣
10.如图所示的几何体的主视图是( )
A. B. C. D.
11.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( ).
A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>1
12.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为( )
A. B. C. D.4﹣
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.
14.抛物线 y=3x2﹣6x+a 与 x 轴只有一个公共点,则 a 的值为_____.
15.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
16.抛物线y=(x﹣2)2﹣3的顶点坐标是____.
17.对于一元二次方程,根的判别式中的表示的数是__________.
18.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:
(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次.
(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:
日期
2月15日
(除夕)
2月16日
(初一)
2月17日
(初二)
2月18日(初三)
2月19日
(初四)
2月20日
(初五)
日接待游客数量(万人次)
7.56
82.83
119.51
84.38
103.2
151.55
这组数据的中位数是 万人次.
(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为 ,理由是 .
(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.
20.(6分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.
21.(6分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.
(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;
(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.
22.(8分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.
23.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
24.(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x
0
1
1
3
4
y
0
0
(3)观察所画的图象,写出该函数的两条性质: .
25.(10分)-()-1+3tan60°
26.(12分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
请你根据图中所提供的信息,完成下列问题:
本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
27.(12分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
2、B
【解析】
试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
故选B.
考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
3、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
4、B
【解析】
先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象
【详解】
根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高
为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形
完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S
关于t的图象的中间部分为水平的线段,故A,D选项错误;
当t=0时,S=0,故C选项错误,B选项正确;
故选:B
【点睛】
本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键
5、C
【解析】
根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴ ,
解得:k<1且k≠1.
故选:C.
【点睛】
本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
6、B
【解析】
连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.
【详解】
连接BD,
∵AB是直径,∠BAD=25°,
∴∠ABD=90°-25°=65°,
∴∠AGD=∠ABD=65°,
故选B.
【点睛】
此题考查圆周角定理,关键是利用直径得出∠ABD=65°.
7、C
【解析】
根据勾股定理求解.
【详解】
设小方格的边长为1,得,
OC=
,AO=
,AC=4,
∵OC2+AO2==16,
AC2=42=16,
∴△AOC是直角三角形,
∴∠AOC=90°.
故选C.
【点睛】
考点:勾股定理逆定理.
8、C
【解析】
如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
【详解】
如图,连接BD、CD
在和中,
同理可得:
,即
为⊙O的直径
故选:C.
【点睛】
本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
9、A
【解析】
分析:根据只有符号不同的两个数是互为相反数解答即可.
详解:的相反数是,即2.
故选A.
点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
10、A
【解析】
找到从正面看所得到的图形即可.
【详解】
解:从正面可看到从左往右2列一个长方形和一个小正方形,
故选A.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
11、A
【解析】
∵一元二次方程mx2+2x-1=0有两个不相等的实数根,
∴m≠0,且22-4×m×(﹣1)>0,
解得:m>﹣1且m≠0.
故选A.
【点睛】
本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:
(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
(3)当△=b2﹣4ac<0时,方程没有实数根.
12、D
【解析】
首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
【详解】
∵四边形ABCD是矩形,
∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
∴∠DAE=∠BEA,
∵AE是∠DEB的平分线,
∴∠BEA=∠AED,
∴∠DAE=∠AED,
∴DE=AD=4,
再Rt△DEC中,EC===,
∴BE=BC-EC=4-.
故答案选D.
【点睛】
本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),
∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°,
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
∴m•m=m,
∴m=,
∴k=.
【点睛】
本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
14、3
【解析】
根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解.
【详解】
∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,
∴判别式Δ=36-12a=0,
解得:a=3,
故答案为3
【点睛】
本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.
15、2.9
【解析】
试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
考点:解直角三角形.
16、(2,﹣3)
【解析】
根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
【详解】
抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.
17、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
18、58
【解析】
根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,
求出∠BCF=∠BAE=13°,即可求出答案.
【详解】
解:∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△CBF和Rt△ABE中
∴Rt△CBF≌Rt△ABE(HL),
∴∠FCB=∠EAB,
∵AB=BC,∠ABC=90°,
∴∠CAB=∠ACB=45°.
∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,
∴∠BCF=∠BAE=13°,
∴∠ACF=∠BCF+∠ACB=45°+13°=58°
故答案为58
【点睛】
本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)
【解析】
(1)由图1可得答案;
(2)根据中位数的定义求解可得;
(3)由近3年平均涨幅在30%左右即可做出估计;
(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.
【详解】
(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.
故答案为:1365.45、414.4;
(2)这组数据的中位数是=93.79万人次,
故答案为:93.79;
(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,
故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.
(4)画树状图如下:
则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,
所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.
20、 (1)证明见解析;(2) △APQ是等边三角形.
【解析】
(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
【详解】
证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
(2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
∴△APQ是等边三角形.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
21、(1)(2)(3) .
【解析】
(1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是△ABC的重心,然后求得BE的长.
(2)过点B作BF∥CA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PD⊥AB,D是边AB的中点,在△ABC中可求得cosA的值.
(3)由,∠PBD=∠ABP,证得△PBD∽△ABP,再证明△DPE∽△DCP得到,PD可求.
【详解】
解:(1)∵P为AC的中点,AC=8,
∴CP=4,
∵∠ACB=90°,BC=6,
∴BP=,
∵D是边AB的中点,P为AC的中点,
∴点E是△ABC的重心,
∴,
(2)过点B作BF∥CA交CD的延长线于点F,
∴,
∵BD=DA,
∴FD=DC,BF=AC,
∵CE=2,ED=3,则CD=5,
∴EF=8,
∴,
∴,
∴,设CP=k,则PA=3k,
∵PD⊥AB,D是边AB的中点,
∴PA=PB=3k,
∴,
∴,
∵,
∴,
(3)∵∠ACB=90°,D是边AB的中点,
∴,
∵,
∴,
∵∠PBD=∠ABP,
∴△PBD∽△ABP,
∴∠BPD=∠A,
∵∠A=∠DCA,
∴∠DPE=∠DCP,
∵∠PDE=∠CDP,
△DPE∽△DCP,
∴,
∵DE=3,DC=5,
∴.
【点睛】
本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.
22、 (1)① 30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.
【解析】
试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;
(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.
解:(1)①;30;
(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:
500k1+30=80,
∴k1=0.1,
500k2=100,
∴k2=0.2
故所求的解析式为y1=0.1x+30; y2=0.2x;
(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;
当x=300时,y=1.
故由图可知当通话时间在300分钟内,选择通话方式②实惠;
当通话时间超过300分钟时,选择通话方式①实惠;
当通话时间在300分钟时,选择通话方式①、②一样实惠.
23、(1)详见解析;(1)①详见解析;②BP=AB.
【解析】
(1)根据要求画出图形即可;
(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
【详解】
(1)解:补全图形如图 1:
(1)①证明:连接 BD,如图 1,
∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
∴AQ=AP,∠QAP=90°,
∵四边形 ABCD 是正方形,
∴AD=AB,∠DAB=90°,
∴∠1=∠1.
∴△ADQ≌△ABP,
∴DQ=BP,∠Q=∠3,
∵在 Rt△QAP 中,∠Q+∠QPA=90°,
∴∠BPD=∠3+∠QPA=90°,
∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
∴DP1+DQ1=1AB1.
②解:结论:BP=AB.
理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.
∵△ADQ≌△ABP,△ANQ≌△ACP,
∴DQ=PB,∠AQN=∠APC=45°,
∵∠AQP=45°,
∴∠NQC=90°,
∵CD=DN,
∴DQ=CD=DN=AB,
∴PB=AB.
【点睛】
本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
24、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
25、0
【解析】
根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算.
【详解】
原式=-2+2--2+3=0.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.
26、(1)120;(2) ;(3)答案见解析;(4)1650.
【解析】
(1)依据节目B的数据,即可得到调查的学生人数;
(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
(3)求得C部分的人数,即可将条形统计图补充完整;
(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
【详解】
,
故答案为120;
,
故答案为;
:,
如图所示:
,
答:该校最喜爱中国诗词大会的学生有1650名.
【点睛】
本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
27、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析
【解析】
分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;
(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.
详解:
(1)乘公交车所占的百分比=,
调查的样本容量50÷=300人,
骑自行车的人数300×=100人,
骑自行车的人数多,多100﹣50=50人;
(2)全校骑自行车的人数2400×=800人,
800>600,
故学校准备的600个自行车停车位不足够.
点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析: 这是一份新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析,共17页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。
山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析: 这是一份山西省(大同)重点名校2021-2022学年中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是等内容,欢迎下载使用。
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。