开学活动
搜索
    上传资料 赚现金

    山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析

    山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析第1页
    山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析第2页
    山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析

    展开

    这是一份山东省青岛43中重点中学2021-2022学年中考五模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列二次根式中,最简二次根式是( )
    A. B. C. D.
    2.在平面直角坐标系中,函数的图象经过( )
    A.第一、二、三象限 B.第一、二、四象限
    C.第一、三、四象限 D.第二、三、四象限
    3.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是(  )

    A. B. C. D.
    4.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A. B. C. D.
    5.下列计算正确的是(  )
    A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
    C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
    6.要使分式有意义,则x的取值范围是( )
    A.x= B.x> C.x< D.x≠
    7.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
    ①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    8.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    9.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
    A.0 B.2.5 C.3 D.5
    10.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
    A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)

    12.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.
    13.方程的解是__________.
    14.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
    15.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为( )

    A.40° B.50° C.60° D.20°
    16.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.

    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.
    (1)求证:DE为⊙O的切线.
    (2)若⊙O的半径为,AD=,求CE的长.

    18.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,
    n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.
    (1) 若m=-8,n =4,直接写出E、F的坐标;
    (2) 若直线EF的解析式为,求k的值;
    (3) 若双曲线过EF的中点,直接写出tan∠EFO的值.

    19.(8分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.
    (1)小张如何进货,使进货款恰好为1300元?
    (2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
    20.(8分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
    (1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);
    (2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).

    21.(8分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    22.(10分)如图,在△ABC中,AB>AC,点D在边AC上.
    (1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)
    (2)若BC=5,点D是AC的中点,求DE的长.

    23.(12分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.
    (2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.
    24.规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
    (1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
    (2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
    (3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A.被开方数含能开得尽方的因数或因式,故A不符合题意,
    B.被开方数含能开得尽方的因数或因式,故B不符合题意,
    C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,
    D.被开方数含分母,故D不符合题意.
    故选C.
    【点睛】
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    2、A
    【解析】
    【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.
    【详解】∵一次函数y=3x+1的k=3>0,b=1>0,
    ∴图象过第一、二、三象限,
    故选A.
    【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.
    3、C
    【解析】
    根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
    【详解】
    ∵△ABC为等边三角形,
    ∴∠B=∠C=60°,BC=AB=a,PC=a-x.
    ∵∠APD=60°,∠B=60°,
    ∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
    ∴∠BAP=∠CPD,
    ∴△ABP∽△PCD,
    ∴,即,
    ∴y=- x2+x.
    故选C.
    【点睛】
    考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
    4、D
    【解析】
    根据“左加右减、上加下减”的原则,
    将抛物线向左平移1个单位所得直线解析式为:;
    再向下平移3个单位为:.故选D.
    5、D
    【解析】
    A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
    【详解】
    A.-2x-2y3×2x3y=-4xy4,故本选项错误;
    B. (−2a2)3=−8a6,故本项错误;
    C. (2a+1)(2a−1)=4a2−1,故本项错误;
    D.35x3y2÷5x2y=7xy,故本选项正确.
    故答案选D.
    【点睛】
    本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
    6、D
    【解析】
    本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
    【详解】
    ∵3x−7≠0,
    ∴x≠.
    故选D.
    【点睛】
    本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
    7、D
    【解析】
    ①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
    所以﹣=﹣1,可得b=2a,
    当x=﹣3时,y<0,
    即9a﹣3b+c<0,
    9a﹣6a+c<0,
    3a+c<0,
    ∵a<0,
    ∴4a+c<0,
    所以①选项结论正确;
    ②∵抛物线的对称轴是直线x=﹣1,
    ∴y=a﹣b+c的值最大,
    即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
    ∴am2+bm<a﹣b,
    m(am+b)+b<a,
    所以此选项结论不正确;
    ③ax2+(b﹣1)x+c=0,
    △=(b﹣1)2﹣4ac,
    ∵a<0,c>0,
    ∴ac<0,
    ∴﹣4ac>0,
    ∵(b﹣1)2≥0,
    ∴△>0,
    ∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
    ④由图象得:当x>﹣1时,y随x的增大而减小,
    ∵当k为常数时,0≤k2≤k2+1,
    ∴当x=k2的值大于x=k2+1的函数值,
    即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
    ak4+bk2>a(k2+1)2+b(k2+1),
    所以此选项结论不正确;
    所以正确结论的个数是1个,
    故选D.
    8、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
    9、C
    【解析】
    解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
    (1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
    (2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
    (1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
    (4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
    (5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
    综上,可得:a=0、2.5或5,∴a不可能是1.
    故选C.
    【点睛】
    本题考查中位数;算术平均数.
    10、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:135000=1.35×105
    故选B.
    【点睛】
    此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、15π−18.
    【解析】
    根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
    【详解】
    S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
    ∵S扇形ACE==12π,
    S扇形BCD==3π,
    S△ABC=×6×6=18,
    ∴S阴影部分=12π+3π−18=15π−18.
    故答案为15π−18.
    【点睛】
    本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
    12、
    【解析】
    分析:根据题意可以列出相应的方程组,从而可以解答本题.
    详解:由题意可得,,
    故答案为
    点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
    13、.
    【解析】
    根据解分式方程的步骤依次计算可得.
    【详解】
    解:去分母,得:,
    解得:,
    当时,,
    所以是原分式方程的解,
    故答案为:.
    【点睛】
    本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
    14、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
    【详解】
    解:1.111121=2.1×11-2.
    故答案为:2.1×11-2.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
    15、B.
    【解析】
    试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.
    考点:圆的基本性质、切线的性质.
    16、1
    【解析】
    连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
    【详解】
    连结BD,如图,

    ∵DC=2AD,
    ∴S△ADB=S△BDC=S△BAC=×6=2,
    ∵AD⊥y轴于点D,AB⊥x轴,
    ∴四边形OBAD为矩形,
    ∴S矩形OBAD=2S△ADB=2×2=1,
    ∴k=1.
    故答案为:1.
    【点睛】
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

    三、解答题(共8题,共72分)
    17、 (1)证明见解析;(2)CE=1.
    【解析】
    (1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;
    (2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.
    【详解】
    (1)连接OD,

    ∵AB是直径,
    ∴∠ADB=90°,
    ∴∠ADO+∠BDO=90°,
    ∵OB=OD,
    ∴∠BDO=∠ABD,
    ∵∠ABD=∠ADE,
    ∴∠ADO+∠ADE=90°,
    即,OD⊥DE,
    ∵OD为半径,
    ∴DE为⊙O的切线;
    (2)∵⊙O的半径为,
    ∴AB=2OA==AC,
    ∵∠ADB=90°,
    ∴∠ADC=90°,
    在Rt△ADC中,由勾股定理得:DC===5,
    ∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,
    ∴∠EDC=∠ADO,
    ∵OA=OD,
    ∴∠ADO=∠OAD,
    ∵AB=AC,AD⊥BC,
    ∴∠OAD=∠CAD,
    ∴∠EDC=∠CAD,
    ∵∠C=∠C,
    ∴△CDE∽△CAD,
    ∴=,
    ∴=,
    解得:CE=1.
    【点睛】
    本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.
    18、(1)E(-3,4)、F(-5,0);(2);(3).
    【解析】
    (1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.
    (2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得 , 根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得 则CE=,在Rt△COE中, 根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;
    (3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2
    即可求出tan∠EFO=.
    【详解】
    解:(1)如图:连接OE,BF,

    E(-3,4)、F(-5,0)
    (2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE

    可证:△BGE≌△OGF(ASA)
    ∴BE=OF
    ∴四边形OEBF为菱形
    令y=0,则,解得 ,∴OF=OE=BE=BF=
    令y=n,则,解得 ∴CE=
    在Rt△COE中,,
    解得
    ∴E()

    (3) 设EB=EO=x,则CE=-m-x,
    在Rt△COE中,(-m-x)2+n2=x2,解得
    ∴E()、F()
    ∴EF的中点为()
    将E()、()代入中,得
    ,得m2=2n2
    ∴tan∠EFO=
    【点睛】
    考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.
    19、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【解析】
    (1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;
    (2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题.
    【详解】
    (1)设A种文具进货x只,B种文具进货只,由题意得:

    解得:x=40,

    答:A种文具进货40只,B种文具进货60只;
    (2)设购进A型文具a只,则有,且;
    解得:,
    ∵a为整数,
    ∴a=48、49、50,一共有三种购货方案;
    利润,
    ∵,w随a增大而减小,
    当a=48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大.
    【点睛】
    本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.
    20、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm
    【解析】
    试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;
    (2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.
    试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;
    (2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.

    考点:解直角三角形的应用;探究型.
    21、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    22、(1)作图见解析;(2)
    【解析】
    (1)根据作一个角等于已知角的步骤解答即可;
    (2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.
    【详解】
    解:(1)如图,∠ADE为所作;

    (2)∵∠ADE=∠ACB,
    ∴DE∥BC,
    ∵点D是AC的中点,
    ∴DE为△ABC的中位线,
    ∴DE=BC=.
    23、(1)6;(2)﹣(x+1),1.
    【解析】
    (1)原式=3+1﹣2×+3=6
    (2)由题意可知:x2+3x+2=0,
    解得:x=﹣1或x=﹣2
    原式=(x﹣1)÷
    =﹣(x+1)
    当x=﹣1时,x+1=0,分式无意义,
    当x=﹣2时,
    原式=1
    24、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
    【解析】
    (1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
    (2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
    (3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
    【详解】
    (1)∵y=x2﹣2x+3=(x﹣1)2+2,
    ∴抛物线上的点到x轴的最短距离为2,
    ∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
    (2)不同意他的看法.理由如下:
    如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,

    设P(t,t2﹣2t+3),则Q(t,t﹣1),
    ∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
    当t=时,PQ有最小值,最小值为,
    ∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
    而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
    ∴不同意他的看法;
    (3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,

    设M(t,t2﹣2t+3),则N(t,t2+c),
    ∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
    当t=时,MN有最小值,最小值为﹣c,
    ∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
    ∴,
    ∴c=1.
    【点睛】
    本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.

    相关试卷

    山东省枣庄市重点中学2021-2022学年中考数学五模试卷含解析:

    这是一份山东省枣庄市重点中学2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    山东省青岛市崂山区重点中学2021-2022学年中考数学最后一模试卷含解析:

    这是一份山东省青岛市崂山区重点中学2021-2022学年中考数学最后一模试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,点,一、单选题,下列说法等内容,欢迎下载使用。

    山东省青岛市即墨区重点中学2021-2022学年十校联考最后数学试题含解析:

    这是一份山东省青岛市即墨区重点中学2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,tan30°的值为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map