![那曲市重点中学2022年中考数学押题卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13561136/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![那曲市重点中学2022年中考数学押题卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13561136/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![那曲市重点中学2022年中考数学押题卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13561136/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
那曲市重点中学2022年中考数学押题卷含解析
展开
这是一份那曲市重点中学2022年中考数学押题卷含解析,共19页。试卷主要包含了答题时请按要求用笔,把一副三角板如图,计算的结果是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于( )
A.60° B.35° C.25° D.20°
2.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
3.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
4.如图是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.
根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)( ).
A.10 cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
5.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
6.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
7.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为( )
A.(0,1) B.(0,2) C. D.(0,3)
8.计算的结果是( )
A. B. C.1 D.2
9.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为( )
A. B. C. D.
10.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:8x²-8xy+2y²= _________________________ .
12.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是 .
13.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.
14.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
15.尺规作图:过直线外一点作已知直线的平行线.
已知:如图,直线l与直线l外一点P.
求作:过点P与直线l平行的直线.
作法如下:
(1)在直线l上任取两点A、B,连接AP、BP;
(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
(3)过点P、M作直线;
(4)直线PM即为所求.
请回答:PM平行于l的依据是_____.
16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.
17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
19.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).
(1)求二次函数图象的对称轴;
(2)当﹣4≤x≤1时,求y的取值范围.
20.(8分)解方程组
21.(10分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;
(1)求证:DE=CF;
(2)若∠B=60°,求EF的长.
22.(10分)观察规律并填空.
______(用含n的代数式表示,n 是正整数,且 n ≥ 2)
23.(12分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
(1)求一次函数的解析式;
(2)求的面积。
24.(14分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.
【详解】
∵BC∥DE,
∴∠CBE=∠E=60°,
∵∠A=35°,∠C+∠A=∠CBE,
∴∠C=∠CBE﹣∠C=60°﹣35°=25°,
故选C.
【点睛】
本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
2、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
3、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
故选:C.
【点睛】
掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
4、C
【解析】
分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
详解:设玻璃球的体积为x,则有
解得30<x<1.
故一颗玻璃球的体积在30cm3以上,1cm3以下.
故选C.
点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
5、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
6、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
7、B
【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
【详解】
由,解得 或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).
【点睛】
本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
8、A
【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
【详解】
.
故选A.
【点睛】
本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
9、A
【解析】
连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
【详解】
连接BD,
∵四边形ABCD为矩形,
∴BD过圆心O,
∵∠BDC=∠BPC(圆周角定理)
∴cos∠BDC=cos∠BPC
∵BD为直径,
∴∠BCD=90°,
∵=,
∴设DC为x,
则BC为2x,
∴BD===x,
∴cos∠BDC===,
∵cos∠BDC=cos∠BPC,
∴cos∠BPC=.
故答案选A.
【点睛】
本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
10、B
【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
12、k<1且k≠1
【解析】
试题分析:根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
解:∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故答案为k<1且k≠1.
考点:根的判别式;一元二次方程的定义.
13、4
【解析】
试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∵EF∥BC,
∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
∴BE=DE,DF=EC,
∵EF=DE+DF,
∴EF=EB+CF=2BE,
∵等边△ABC的边长为6,
∵EF∥BC,
∴△ADE是等边三角形,
∴EF=AE=2BE,
∴EF==,
故答案为4
考点:等边三角形的判定与性质;平行线的性质.
14、.
【解析】
利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.
【详解】
∵a1=4
a2=,
a3=,
a4=,
…
数列以4,−三个数依次不断循环,
∵2019÷3=673,
∴a2019=a3=,
故答案为:.
【点睛】
此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.
15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【解析】
利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
【详解】
解:由作法得PM=AB,BM=PA,
∴四边形ABMP为平行四边形,
∴PM∥AB.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【点睛】
本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
16、﹣1
【解析】
根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.
【详解】
解:∵A(﹣3,4),
∴OC==5,
∴CB=OC=5,
则点B的横坐标为﹣3﹣5=﹣8,
故B的坐标为:(﹣8,4),
将点B的坐标代入y=得,4=,
解得:k=﹣1.
故答案为:﹣1.
17、
【解析】
试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.
考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.
三、解答题(共7小题,满分69分)
18、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
19、(1)x=-1;(2)﹣6≤y≤1;
【解析】
(1)根据抛物线的对称性和待定系数法求解即可;
(2)根据二次函数的性质可得.
【详解】
(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,
可得:1﹣2m+5m=﹣2,
解得:m=﹣1,
所以二次函数y=x2﹣2mx+5m的对称轴是x=,
(2)∵y=x2+2x﹣5=(x+1)2﹣6,
∴当x=﹣1时,y取得最小值﹣6,
由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,
∴当﹣4≤x≤1时,﹣6≤y≤1.
【点睛】
本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.
20、
【解析】
将②×3,再联立①②消未知数即可计算.
【详解】
解:
②得: ③
①+③得:
把代入③得
∴方程组的解为
【点睛】
本题考查二元一次方程组解法,关键是掌握消元法.
21、证明见解析;.
【解析】
根据两组对边分别平行的四边形是平行四边形即可证明;
只要求出CD即可解决问题.
【详解】
证明:、E分别是AB、AC的中点
,
又
四边形CDEF为平行四边形
.
,
,
又为AB中点
,
在中,
,
,
四边形CDEF是平行四边形,
.
【点睛】
本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22、
【解析】
由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
【详解】
=
=
=.
故答案为:.
【点睛】
本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
23、(1);(2)6.
【解析】
(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;
(2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.
【详解】
(1)当x=2时,=4,
当y=-2时,-2=,x=-4,
所以点A(2,4),点B(-4,-2),
将A,B两点分别代入一次函数解析式,得
,
解得:,
所以,一次函数解析式为;
(2)令直线AB与y轴交点为D,则OD=b=2,
.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.
24、(1)n=2;y=x2﹣x﹣1;(2)p=;当t=2时,p有最大值;(3)6个,或;
【解析】
(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.
【详解】
解:
(1)∵直线l:y=x+m经过点B(0,﹣1),
∴m=﹣1,
∴直线l的解析式为y=x﹣1,
∵直线l:y=x﹣1经过点C(4,n),
∴n=×4﹣1=2,
∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),
∴,
解得,
∴抛物线的解析式为y=x2﹣x﹣1;
(2)令y=0,则x﹣1=0,
解得x=,
∴点A的坐标为(,0),
∴OA=,
在Rt△OAB中,OB=1,
∴AB===,
∵DE∥y轴,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,
DF=DE•sin∠DEF=DE•=DE,
∴p=2(DF+EF)=2(+)DE=DE,
∵点D的横坐标为t(0<t<4),
∴D(t, t2﹣t﹣1),E(t, t﹣1),
∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
∴p=×(﹣t2+2t)=﹣t2+t,
∵p=﹣(t﹣2)2+,且﹣<0,
∴当t=2时,p有最大值.
(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.
如图3中,设A1的横坐标为m,则O1的横坐标为m+,
∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,
解得m=,
如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,
∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,
解得m=,
∴旋转180°时点A1的横坐标为或
【点睛】
本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.
相关试卷
这是一份2022年安康市重点中学中考押题数学预测卷含解析,共22页。试卷主要包含了已知,则的值为,下列判断正确的是等内容,欢迎下载使用。
这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
这是一份2022届福州市重点中学中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,已知A样本的数据如下等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)