|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析01
    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析02
    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析

    展开
    这是一份江苏省扬州市江都区五校联谊重点中学2022年中考适应性考试数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是(  )
    A.2 B.1 C.-2 D.-1
    2.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于(  )
    A.2 B.3 C.4 D.6
    3.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为(  )
    A.780×105 B.78×106 C.7.8×107 D.0.78×108
    4.下列实数中是无理数的是(  )
    A. B.2﹣2 C.5. D.sin45°
    5.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    6.如图所示,a∥b,直线a与直线b之间的距离是( )

    A.线段PA的长度 B.线段PB的长度
    C.线段PC的长度 D.线段CD的长度
    7.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=(  )

    A.40° B.110° C.70° D.140°
    8.下列运算正确的是(  )
    A.2a2+3a2=5a4 B.(﹣)﹣2=4
    C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab
    9.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且01;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )
    A.1个 B.2个 C.3个 D.4个
    10.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )

    A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是
    C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.正五边形的内角和等于______度.
    12.如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为 .

    13.已知是二元一次方程组的解,则m+3n的立方根为__.
    14.如图,直线l1∥l2,则∠1+∠2=____.

    15.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.

    16.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知是的直径,点、在上,且,过点作,垂足为.

    求的长;
    若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.
    18.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
    当的半径为1时.
    在点、、中,的“特征点”是______;
    点P在直线上,若点P为的“特征点”求b的取值范围;
    的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.

    19.(8分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:

    (1)图(1)中的BC长是多少?
    (2)图(2)中的a是多少?
    (3)图(1)中的图形面积是多少?
    (4)图(2)中的b是多少?
    20.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.

    21.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

    22.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
    ①求y关于x的函数关系式;
    ②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
    23.(12分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
    (1)求a的值,并写出点B的坐标;
    (2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.

    24.已知抛物线y=ax2+bx+c.
    (Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
    ①求该抛物线的解析式;
    ②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
    设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
    (Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
    考点:根与系数的关系.
    2、C
    【解析】
    设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
    ∴R=4cm.
    故选C.
    3、C
    【解析】
    科学记数法记数时,主要是准确把握标准形式a×10n即可.
    【详解】
    解:78000000= 7.8×107.
    故选C.
    【点睛】
    科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.
    4、D
    【解析】
    A、是有理数,故A选项错误;
    B、是有理数,故B选项错误;
    C、是有理数,故C选项错误;
    D、是无限不循环小数,是无理数,故D选项正确;
    故选:D.
    5、C
    【解析】
    ①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
    ②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
    ③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    【详解】
    :①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴-=1,
    ∴b=-2a,
    ∴4a+2b=0,结论①错误;

    ②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
    ∴a-b+c=3a+c=0,
    ∴a=-.
    又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
    ∴2≤c≤3,
    ∴-1≤a≤-,结论②正确;
    ③∵a<0,顶点坐标为(1,n),
    ∴n=a+b+c,且n≥ax2+bx+c,
    ∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
    又∵a<0,
    ∴抛物线开口向下,
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    故选C.
    【点睛】
    本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
    6、A
    【解析】
    分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.
    详解:∵a∥b,AP⊥BC
    ∴两平行直线a、b之间的距离是AP的长度
    ∴根据平行线间的距离相等
    ∴直线a与直线b之间的距离AP的长度
    故选A.
    点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.
    7、B
    【解析】
    先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
    【详解】
    ∵AB∥CD,
    ∴∠ACD+∠BAC=180°,
    ∵∠ACD=40°,
    ∴∠BAC=180°﹣40°=140°,
    ∵AE平分∠CAB,
    ∴∠BAE=∠BAC=×140°=70°,
    ∴∠DEA=180°﹣∠BAE=110°,
    故选B.
    【点睛】
    本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
    8、B
    【解析】
    根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.
    【详解】
    A. 2a2+3a2=5a2,故本选项错误;
    B. (−)-2=4,正确;
    C. (a+b)(−a−b)=−a2−2ab−b2,故本选项错误;
    D. 8ab÷4ab=2,故本选项错误.
    故答案选B.
    【点睛】
    本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.
    9、A
    【解析】
    如图,
    且图像与y轴交于点,
    可知该抛物线的开口向下,即,
    ①当时,

    故①错误.
    ②由图像可知,当时,


    故②错误.
    ③∵
    ∴,
    又∵,
    ∴,
    ∴,
    ∴,
    故③错误;
    ④∵,,
    又∵,
    ∴.
    故④正确.
    故答案选A.

    【点睛】
    本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.
    10、D
    【解析】
    利用概率公式,一一判断即可解决问题.
    【详解】
    A、错误.小明还有可能是平;
    B、错误、小明胜的概率是 ,所以输的概率是也是;
    C、错误.两人出相同手势的概率为;
    D、正确.小明胜的概率和小亮胜的概率一样,概率都是;
    故选D.
    【点睛】
    本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°
    12、1.
    【解析】
    试题分析:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为211°的扇形,
    ∴2πr=×2π×10,解得r=1.
    故答案为:1.
    【考点】圆锥的计算.
    13、3
    【解析】
    把x与y的值代入方程组求出m与n的值,即可确定出所求.
    【详解】
    解:把代入方程组得:
    相加得:m+3n=27,
    则27的立方根为3,
    故答案为3
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.
    14、30°
    【解析】
    分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
    【详解】
    如图,分别过A、B作l1的平行线AC和BD,

    ∵l1∥l2,
    ∴AC∥BD∥l1∥l2,
    ∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
    ∵∠EAB+∠FBA=125°+85°=210°,
    ∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
    即∠1+∠2+180°=210°,
    ∴∠1+∠2=30°,
    故答案为30°.
    【点睛】
    本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
    15、
    【解析】
    列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
    【详解】
    解:列表如下:

    5
    6
    7
    8
    9
    5
    ﹣﹣﹣
    (6、5)
    (7、5)
    (8、5)
    (9、5)
    6
    (5、6)
    ﹣﹣﹣
    (7、6)
    (8、6)
    (9、6)
    7
    (5、7)
    (6、7)
    ﹣﹣﹣
    (8、7)
    (9、7)
    8
    (5、8)
    (6、8)
    (7、8)
    ﹣﹣﹣
    (9、8)
    9
    (5、9)
    (6、9)
    (7、9)
    (8、9)
    ﹣﹣﹣
    所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
    则P(恰好是两个连续整数)=
    故答案为.
    【点睛】
    此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
    16、
    【解析】
    根据同弧或等弧所对的圆周角相等来求解.
    【详解】
    解:∵∠E=∠ABD,
    ∴tan∠AED=tan∠ABD==.
    故选D.
    【点睛】
    本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.

    三、解答题(共8题,共72分)
    17、(1)OE=;(2)阴影部分的面积为
    【解析】
    (1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.
    【详解】
    解:(1) ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵OE⊥AC,
    ∴OE // BC,
    又∵点O是AB中点,
    ∴OE是△ABC的中位线,
    ∵∠D=60°,
    ∴∠B=60°,
    又∵AB=6,
    ∴BC=AB·cos60°=3,
    ∴OE= BC=;
    (2)连接OC,
    ∵∠D=60°,
    ∴∠AOC=120°,
    ∵OF⊥AC,
    ∴AE=CE,=,
    ∴∠AOF=∠COF=60°,
    ∴△AOF为等边三角形,
    ∴AF=AO=CO,
    ∵在Rt△COE与Rt△AFE中,

    ∴△COE≌△AFE,
    ∴阴影部分的面积=扇形FOC的面积,
    ∵S扇形FOC==π.
    ∴阴影部分的面积为π.

    【点睛】
    本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.
    18、(1)①、;②(2)或,.
    【解析】
    据若,则点P为的“特征点”,可得答案;
    根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
    根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
    【详解】
    解:,,
    点是的“特征点”;
    ,,
    点是的“特征点”;
    ,,
    点不是的“特征点”;
    故答案为、
    如图1,
    在上,若存在的“特征点”点P,点O到直线的距离.
    直线交y轴于点E,过O作直线于点H.
    因为.
    在中,可知.
    可得同理可得.
    的取值范围是:
    如图2

    设C点坐标为,
    直线,.
    ,,
    ,.



    线段MN上的所有点都不是的“特征点”,

    即,
    解得或,
    点C的横坐标的取值范围是或,.
    故答案为 :(1)①、;②(2)或,.
    【点睛】
    本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
    19、 (1)8cm(2)24cm2(3)60cm2(4) 17s
    【解析】
    (1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;
    (2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;
    (3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,
    (4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.
    【详解】
    (1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;
    (2) a=S△ABC=×6×8=24(㎝2) ;
    (3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝
    ∴图1中的图象面积为6×14-4×6=60㎝2 ;
    (4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒.
    20、1.
    【解析】
    试题分析:根据相似三角形的判定与性质,可得答案.
    试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
    考点:相似三角形的判定与性质.
    21、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
    【解析】
    (1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
    (2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
    (3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
    【详解】
    (1)设抛物线解析式为,
    当时,,
    点的坐标为,
    将点坐标代入解析式得,
    解得:,
    抛物线的函数表达式为;
    (2)由抛物线的对称性得,

    当时,,
    矩形的周长




    当时,矩形的周长有最大值,最大值为;
    (3)如图,

    当时,点、、、的坐标分别为、、、,
    矩形对角线的交点的坐标为,
    直线平分矩形的面积,
    点是和的中点,

    由平移知,
    是的中位线,

    所以抛物线向右平移的距离是1个单位.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
    22、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大
    【解析】
    (1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,
    (2)①据题意得,y=﹣50x+15000,
    ②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,
    (3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.
    【详解】
    解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得

    解得
    答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
    (2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,
    ②据题意得,100﹣x≤2x,解得x≥33,
    ∵y=﹣50x+15000,﹣50<0,
    ∴y随x的增大而减小,
    ∵x为正整数,
    ∴当x=34时,y取最大值,则100﹣x=66,
    即商店购进34台A型电脑和66台B型电脑的销售利润最大.
    (3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,
    33≤x≤70
    ①当0<m<50时,y随x的增大而减小,
    ∴当x=34时,y取最大值,
    即商店购进34台A型电脑和66台B型电脑的销售利润最大.
    ②m=50时,m﹣50=0,y=15000,
    即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;
    ③当50<m<100时,m﹣50>0,y随x的增大而增大,
    ∴当x=70时,y取得最大值.
    即商店购进70台A型电脑和30台B型电脑的销售利润最大.
    【点睛】
    本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.
    23、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.
    【详解】
    (1)把点A(0,2)代入抛物线的解析式可得,2=a+3,
    ∴a=-1,
    ∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)
    (2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,
    由解得x=
    ∴点C的横坐标为
    ∵MN=m-1,四边形MDEN是正方形,
    ∴C(,m-1)
    把C点代入y=-(x-1)2+3,
    得m-1=-+3,
    解得m=3或-5(舍去)
    ∴平移后的解析式为y=-(x-3)2+3,
    当点C在x轴的下方时,C(,1-m)
    把C点代入y=-(x-1)2+3,
    得1-m=-+3,
    解得m=7或-1(舍去)
    ∴平移后的解析式为y=-(x-7)2+3
    综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.

    【点睛】
    此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.
    24、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
    【解析】
    (I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
    【详解】
    (I)①设抛物线的解析式为y=a(x+2)2﹣3,
    ∵抛物线经过点B(﹣3,0),
    ∴0=a(﹣3+2)2﹣3,
    解得:a=1,
    ∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
    ②设直线AB的解析式为y=kx+m(k≠0),
    将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
    得:,解得:,
    ∴直线AB的解析式为y=﹣2x﹣2.
    ∵直线l与AB平行,且过原点,
    ∴直线l的解析式为y=﹣2x.
    当点P在第二象限时,x<0,如图所示.
    S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
    ∴S=S△POB+S△AOB=﹣3x+2(x<0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围是≤x≤.
    当点P′在第四象限时,x>0,
    过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
    S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
    ∵S△ABE=×2×3=3,
    ∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
    ∵3+6≤S≤6+2,
    ∴,即,
    解得:≤x≤,
    ∴x的取值范围为≤x≤.
    综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
    (II)ac≤1,理由如下:
    ∵当x=c时,y=0,
    ∴ac2+bc+c=0,
    ∵c>1,
    ∴ac+b+1=0,b=﹣ac﹣1.
    由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
    把x=0代入y=ax2+bx+c,得y=c,
    ∴抛物线与y轴的交点为(0,c).
    ∵a>0,
    ∴抛物线开口向上.
    ∵当0<x<c时,y>0,
    ∴抛物线的对称轴x=﹣≥c,
    ∴b≤﹣2ac.
    ∵b=﹣ac﹣1,
    ∴﹣ac﹣1≤﹣2ac,
    ∴ac≤1.

    【点睛】
    本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.

    相关试卷

    2022年江苏省扬州市江都区国际校中考三模数学试题含解析: 这是一份2022年江苏省扬州市江都区国际校中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列4个数等内容,欢迎下载使用。

    2022年江苏省扬州市江都区等六校中考联考数学试题含解析: 这是一份2022年江苏省扬州市江都区等六校中考联考数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析: 这是一份2022年江苏省扬州市江都区城区中考适应性考试数学试题含解析,共22页。试卷主要包含了下列四个多项式,能因式分解的是,下列事件是确定事件的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map