江苏省泰兴市济川实验初中2021-2022学年中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cm B.cm C.8cm D.cm
2.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
3.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
4.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20° B.30° C.45° D.50°
5.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ( )
A. B.2 C.3 D.+2
6.下列计算正确的是
A. B. C. D.
7.-的立方根是( )
A.-8 B.-4 C.-2 D.不存在
8.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为( )
A. B. C. D.
9.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
10.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
11.下列各数中,无理数是( )
A.0 B. C. D.π
12.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
14.若,,则的值为 ________ .
15.9的算术平方根是 .
16.为了求1+2+22+23+…+22016+22017的值,
可令S=1+2+22+23+…+22016+22017,
则2S=2+22+23+24+…+22017+22018,
因此2S﹣S=22018﹣1,
所以1+22+23+…+22017=22018﹣1.
请你仿照以上方法计算1+5+52+53+…+52017的值是_____.
17.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.
18.若一个多边形每个内角为140°,则这个多边形的边数是________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
20.(6分)图1是一商场的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时与之间的距离(结果保留一位小数).(参考数据:,,)
21.(6分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:
购买量x(千克)
1
1.5
2
2.5
3
付款金额y(元)
a
7.5
10
12
b
(1)由表格得:a= ; b= ;
(2)求y关于x的函数解析式;
(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?
22.(8分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
①求此抛物线的解析式;
②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
23.(8分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
24.(10分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A
B
C
笔试
85
95
90
口试
80
85
(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
25.(10分)阅读下列材料:
材料一:
早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.
材料二:
以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.
年度
2013
2014
2015
2016
2017
参观人数(人次)
7 450 000
7 630 000
7 290 000
7 550 000
8 060 000
年增长率(%)
38.7
2.4
-4.5
3.6
6.8
他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.
根据以上信息解决下列问题:
(1)补全以下两个统计图;
(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.
26.(12分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
27.(12分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
∴留下的扇形的弧长==12π,
根据底面圆的周长等于扇形弧长,
∴圆锥的底面半径r==6cm,
∴圆锥的高为=3cm
故选B.
考点: 圆锥的计算.
2、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
3、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
4、D
【解析】
根据两直线平行,内错角相等计算即可.
【详解】
因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
【点睛】
本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
5、C
【解析】
试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.
考点:角平分线的性质和中垂线的性质.
6、C
【解析】
根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
【详解】
、与不是同类项,不能合并,此选项错误;
、,此选项错误;
、,此选项正确;
、,此选项错误.
故选:.
【点睛】
此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
7、C
【解析】
分析:首先求出的值,然后根据立方根的计算法则得出答案.
详解:∵,, ∴的立方根为-2,故选C.
点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
8、A
【解析】
根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
【详解】
如图所示,
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴2S2=S1.
观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
∴Sn=()n﹣2.
当n=2018时,S2018=()2018﹣2=()3.
故选A.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
9、C
【解析】
【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
【详解】观察直方图,由图可知:
A. 最喜欢足球的人数最多,故A选项错误;
B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
故选C.
【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
10、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
【点睛】
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
11、D
【解析】
利用无理数定义判断即可.
【详解】
解:π是无理数,
故选:D.
【点睛】
此题考查了无理数,弄清无理数的定义是解本题的关键.
12、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.
【详解】
解:连接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中, ,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:.
故答案为:.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
14、-.
【解析】
分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
故答案为.
点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
15、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
16、
【解析】
根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.
【详解】
解:令S=1+5+52+53+…+52017,
则5S=5+52+53+…+52012+52018,
5S﹣S=﹣1+52018,
4S=52018﹣1,
则S=,
故答案为:.
【点睛】
此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.
17、x>﹣1.
【解析】
根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式 3x+b>ax-3的解集.
【详解】
解:∵函数y=3x+b和y=ax-3的图象交于点P(-1,-5),
∴不等式 3x+b>ax-3的解集是x>-1,
故答案为:x>-1.
【点睛】
本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.
18、九
【解析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.
【详解】
由题意可得:180°×(n−2)=140°×n,
解得n=9,
故多边形是九边形.
故答案为9.
【点睛】
本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
【解析】
【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
【详解】(1)当x=1时,n=﹣×1+4=1,
∴点B的坐标为(1,1).
∵反比例函数y=过点B(1,1),
∴k=1×1=1;
(2)∵k=1>0,
∴当x>0时,y随x值增大而减小,
∴当2≤x≤1时,1≤y≤2.
【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
20、1.4米.
【解析】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.
【详解】
过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1,
在Rt△ABE中,AB=1,∠A=37°,
∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,
在Rt△CDF中,CD=1,∠D=45°,
∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四边形BEMC为平行四边形,
∴BC=EM,CM=BE.
在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,
∴EM=≈1.4,
∴B与C之间的距离约为1.4米.
【点睛】
本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.
21、(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.
【解析】
(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;
(3)代入(2)的解析式即可解答.
【详解】
解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为a=5,b=1.
(2)当0≤x≤2时,设线段OA的解析式为y=kx,
∵y=kx的图象经过(2,10),
∴2k=10,解得k=5,
∴y=5x;
当x>2时,设y与x的函数关系式为:y=x+b
∵y=kx+b的图象经过点(2,10),且x=3时,y=1,
,解得,
∴当x>2时,y与x的函数关系式为:y=4x+2.
∴y关于x的函数解析式为: ;
(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.
(8+4×4+2)−24.4=1.6(元).
答:如果他们两人合起来购买,可以比分开购买节约1.6元.
【点睛】
本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.
22、(1)①;②n≤1;(2)ac≤1,见解析.
【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
【详解】
解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
△=(b+1)2=1,b=﹣1,
平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
∴4a﹣2b=1,
∴a=﹣,b=﹣1,
原抛物线:y=﹣x2+x,
②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
由得:x2+2n=1有解,所以n≤1.
(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
其解析式为:y=ax2﹣bx+c过点(c,1),
∴ac2﹣bc+c=1 (c>1),
∴ac﹣b+1=1,b=ac+1,
且当x=1时,y=c,
对称轴:x=,抛物线开口向上,画草图如右所示.
由题知,当1<x<c时,y>1.
∴≥c,b≥2ac,
∴ac+1≥2ac,ac≤1;
【点睛】
本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
23、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
【解析】
试题分析:证明≌即可得出结论.
①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
分成三种情况讨论即可.
试题解析:(1)
理由是:如图1,∵四边形EFGD是正方形,
∴
∵四边形ABCD是正方形,
∴
∴
∴≌
∴
∵
∴
∴ 即
(2)①位置关系保持不变,数量关系变为
理由是:如图2,连接EG、DF交于点O,连接OC,
∵四边形EFGD是矩形,
∴
Rt中,OG=OF,
Rt中,
∴
∴D、E、F、C、G在以点O为圆心的圆上,
∵
∴DF为的直径,
∵
∴EG也是的直径,
∴∠ECG=90°,即
∴
∵
∴
∵
∴
∴
②由①知:
∴设
分三种情况:
(i)当时,如图3,过E作于H,则EH∥AD,
∴
∴ 由勾股定理得:
∴
(ii)当时,如图1,过D作于H,
∵
∴
∴
∴
∴
∴
(iii)当时,如图5,
∴
∴
综上所述,当为等腰三角形时,CG的长为或或.
点睛:两组角对应,两三角形相似.
24、(1)90;(2)144度;(3)105,120,75;(4)B
【解析】
(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;
(2)用360°乘以B对应的百分比可得答案;
(3)用总人数乘以A、B、C三人对应的百分比可得答案;
(4)根据加权平均数的定义计算可得.
【详解】
解:(1)由条形图知,A演讲得分为90分,
补全图形如下:
故答案为90;
(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,
故答案为144;
(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,
故答案为105、120、75;
(4)A的最终得分为=92.5(分),
B的最终得分为=98(分),
C的最终得分为=84(分),
∴B最终当选,
故答案为B.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
25、(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可
【解析】
分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.
详解:(1)补全统计图如
(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)
点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.
26、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
27、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了计算的结果是,4的平方根是等内容,欢迎下载使用。
江苏省泰兴市实验初中2021-2022学年中考联考数学试卷含解析: 这是一份江苏省泰兴市实验初中2021-2022学年中考联考数学试卷含解析,共19页。
2021-2022学年江苏省泰州市泰兴市中考数学模拟预测题含解析: 这是一份2021-2022学年江苏省泰州市泰兴市中考数学模拟预测题含解析,共26页。