|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析
    立即下载
    加入资料篮
    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析01
    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析02
    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析

    展开
    这是一份江苏省句容市二中学片区合作共同体达标名校2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程有实数根,则满足,如图所示的工件,其俯视图是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一元一次不等式组的解集中,整数解的个数是( )
    A.4 B.5 C.6 D.7
    2.已知二次函数(为常数),当时,函数的最小值为5,则的值为(  )
    A.-1或5 B.-1或3 C.1或5 D.1或3
    3.已知一个正多边形的一个外角为36°,则这个正多边形的边数是(  )
    A.8 B.9 C.10 D.11
    4.下列四个命题中,真命题是(  )
    A.相等的圆心角所对的两条弦相等
    B.圆既是中心对称图形也是轴对称图形
    C.平分弦的直径一定垂直于这条弦
    D.相切两圆的圆心距等于这两圆的半径之和
    5.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为(  )
    A. B. C. D.
    6.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
    A. B.
    C. D.
    7.关于的方程有实数根,则满足( )
    A. B.且 C.且 D.
    8.如图所示的工件,其俯视图是(  )

    A. B. C. D.
    9.下列关于x的方程中,属于一元二次方程的是(  )
    A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=0
    10.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )

    A.两车同时到达乙地
    B.轿车在行驶过程中进行了提速
    C.货车出发3小时后,轿车追上货车
    D.两车在前80千米的速度相等
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算:的结果为_____.
    12.为了求1+2+22+23+…+22016+22017的值,
    可令S=1+2+22+23+…+22016+22017,
    则2S=2+22+23+24+…+22017+22018,
    因此2S﹣S=22018﹣1,
    所以1+22+23+…+22017=22018﹣1.
    请你仿照以上方法计算1+5+52+53+…+52017的值是_____.
    13.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.

    14.若正六边形的边长为2,则此正六边形的边心距为______.
    15.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.
    16.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.

    三、解答题(共8题,共72分)
    17.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
    (1)转动转盘一次,求转出的数字是-2的概率;
    (2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.

    18.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
    求m、n的值;求直线AC的解析式.
    19.(8分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)

    20.(8分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.

    21.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=.
    22.(10分)()如图①已知四边形中,,BC=b,,求:
    ①对角线长度的最大值;
    ②四边形的最大面积;(用含,的代数式表示)
    ()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)

    23.(12分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
    (1)求新传送带AC的长度;
    (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)

    24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
    考点:一元一次不等式组的整数解.
    2、A
    【解析】
    由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
    【详解】
    解:∵x>h时,y随x的增大而增大,当x ∴①若h<1,当时,y随x的增大而增大,
    ∴当x=1时,y取得最小值5,
    可得:,
    解得:h=−1或h=3(舍),
    ∴h=−1;
    ②若h>3,当时,y随x的增大而减小,
    当x=3时,y取得最小值5,
    可得:,
    解得:h=5或h=1(舍),
    ∴h=5,
    ③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
    ∴此种情况不符合题意,舍去.
    综上所述,h的值为−1或5,
    故选:A.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
    3、C
    【解析】
    试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.
    考点:多边形的内角和外角.
    4、B
    【解析】
    试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;
    B. 圆既是中心对称图形也是轴对称图形,正确;
    C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;
    D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.
    故选B.
    5、B
    【解析】
    匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.
    【详解】
    ∵甲、乙两人分别以4m/s和5m/s的速度,
    ∴两人的相对速度为1m/s,
    设乙的奔跑时间为t(s),所需时间为20s,
    两人距离20s×1m/s=20m,
    故选B.
    【点睛】
    此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.
    6、B
    【解析】
    抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    ∴所得图象的解析式为:y=(x+1)1-1;
    故选:B.
    【点睛】
    本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
    7、A
    【解析】
    分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
    【详解】
    当a=5时,原方程变形为-4x-1=0,解得x=-;
    当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
    所以a的取值范围为a≥1.
    故选A.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
    8、B
    【解析】
    试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,
    故选B.
    点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.
    9、B
    【解析】
    根据一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2进行分析即可.
    【详解】
    A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;
    B. 是一元二次方程,故此选项正确;
    C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;
    D. a=0时,不是一元二次方程,故此选项错误;
    故选B.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是明白:
    一元二次方程必须同时满足三个条件:
    ①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;
    ②只含有一个未知数;
    ③未知数的最高次数是2.
    10、B
    【解析】
    ①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.
    【详解】
    由题意和图可得,
    轿车先到达乙地,故选项A错误,
    轿车在行驶过程中进行了提速,故选项B正确,
    货车的速度是:300÷5=60千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,
    设货车对应的函数解析式为y=kx,
    5k=300,得k=60,
    即货车对应的函数解析式为y=60x,
    设CD段轿车对应的函数解析式为y=ax+b,
    ,得,
    即CD段轿车对应的函数解析式为y=110x-195,
    令60x=110x-195,得x=3.9,
    即货车出发3.9小时后,轿车追上货车,故选项C错误,
    故选:B.
    【点睛】
    此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:根据二次根式的性质先化简,再合并同类二次根式即可.
    详解:原式=3-5=﹣2.
    点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
    12、
    【解析】
    根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.
    【详解】
    解:令S=1+5+52+53+…+52017,
    则5S=5+52+53+…+52012+52018,
    5S﹣S=﹣1+52018,
    4S=52018﹣1,
    则S=,
    故答案为:.
    【点睛】
    此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.
    13、
    【解析】
    试题分析:上方的正六边形涂红色的概率是,故答案为.
    考点:概率公式.
    14、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.
    15、或
    【解析】
    解方程x2-4x+3=0得,x1=1,x2=3,
    ①当3是直角边时,∵△ABC最小的角为A,∴tanA=;
    ②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;
    所以tanA的值为或.
    16、(2,2).
    【解析】
    连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
    【详解】
    如图,连结OA,
    OA==5,
    ∵B为⊙O内一点,
    ∴符合要求的点B的坐标(2,2)答案不唯一.
    故答案为:(2,2).

    【点睛】
    考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.

    三、解答题(共8题,共72分)
    17、(1);(2).
    【解析】
    【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
    (2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
    【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
    所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
    ∴转动转盘一次,求转出的数字是-2的概率为=;
    (2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
    第一次 第二次
    1
    -2
    3
    1
    (1,1)
    (1,-2)
    (1,3)
    -2
    (-2,1)
    (-2,-2)
    (-2,3)
    3
    (3,1)
    (3,-2)
    (3,3)
    由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
    【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1)m=-1,n=-1;(2)y=-x+
    【解析】
    (1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
    (2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
    【详解】
    (1)∵直线与双曲线相交于A(-1,a)、B两点,
    ∴B点横坐标为1,即C(1,0)
    ∵△AOC的面积为1,
    ∴A(-1,1)
    将A(-1,1)代入,可得m=-1,n=-1;
    (2)设直线AC的解析式为y=kx+b
    ∵y=kx+b经过点A(-1,1)、C(1,0)
    ∴解得k=-,b=.
    ∴直线AC的解析式为y=-x+.
    【点睛】
    本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
    19、AC= 6.0km,AB= 1.7km;
    【解析】
    在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
    【详解】
    由题意可得:∠AOC=90°,OC=5km.
    在Rt△AOC中,
    ∵AC=,
    ∴AC=≈6.0km,
    ∵tan34°=,
    ∴OA=OC•tan34°=5×0.67=3.35km,
    在Rt△BOC中,∠BCO=45°,
    ∴OB=OC=5km,
    ∴AB=5﹣3.35=1.65≈1.7km.
    答:AC的长为6.0km,AB的长为1.7km.
    【点睛】
    本题主要考查三角函数的知识。
    20、
    【解析】
    过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
    【详解】
    解:

    过点B作BD⊥AC,垂足为点D,
    在Rt△ABD中,,
    ∵,AB=5,
    ∴AD=AB·cosA=5×=3,
    ∴BD=4,
    ∵AC=5,
    ∴DC=2,
    ∴BC=.
    【点睛】
    本题考查了锐角的三角函数和勾股定理的运用.
    21、
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    原式,


    当时,原式
    【点睛】
    本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
    22、(1)①;②;(2)150+475+475.
    【解析】
    (1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
    (2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
    △ACD′的面积即可.
    【详解】
    (1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
    ②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=AD×CD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
    (2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=AB×sin60°=10,EB=AB×cos60°=10,S△ABC=AE×BC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,

    当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=AC×D’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
    【点睛】
    本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
    23、(1)5.6
    (2)货物MNQP应挪走,理由见解析.
    【解析】
    (1)如图,作AD⊥BC于点D

    Rt△ABD中,
    AD=ABsin45°=4
    在Rt△ACD中,∵∠ACD=30°
    ∴AC=2AD=4
    即新传送带AC的长度约为5.6米.
    (2)结论:货物MNQP应挪走.
    在Rt△ABD中,BD=ABcos45°=4
    在Rt△ACD中,CD=ACcos30°=
    ∴CB=CD—BD=
    ∵PC=PB—CB ≈4—2.1=1.9<2
    ∴货物MNQP应挪走.
    24、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
    【解析】
    (1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
    (2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    (1 )由题意可得:cos∠FHE=,则∠FHE=60°;
    (2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,

    在 Rt△ABC 中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
    ∴sin60°==,
    ∴FG≈2.17(m),
    ∴FM=FG+GM≈4.4(米),
    答:篮板顶端 F 到地面的距离是 4.4 米.
    【点睛】
    本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.

    相关试卷

    2022届江苏省句容市二中学片区合作共同体达标名校中考冲刺卷数学试题含解析: 这是一份2022届江苏省句容市二中学片区合作共同体达标名校中考冲刺卷数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,将一副三角尺等内容,欢迎下载使用。

    2021-2022学年江苏省镇江市句容二中片区合作共同体重点达标名校中考数学考前最后一卷含解析: 这是一份2021-2022学年江苏省镇江市句容二中片区合作共同体重点达标名校中考数学考前最后一卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,函数y=mx2+,下列命题中,正确的是等内容,欢迎下载使用。

    2021-2022学年江苏省盐城市大丰区共同体重点达标名校中考数学模试卷含解析: 这是一份2021-2022学年江苏省盐城市大丰区共同体重点达标名校中考数学模试卷含解析,共19页。试卷主要包含了已知点P,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map