|试卷下载
搜索
    上传资料 赚现金
    湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析
    立即下载
    加入资料篮
    湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析01
    湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析02
    湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析

    展开
    这是一份湖北省广水市市马坪镇2021-2022学年中考数学模试卷含解析,共23页。试卷主要包含了若M,下列命题中错误的有个,把一副三角板如图,方程x2﹣3x=0的根是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是(  )

    A. 或 
    B. 或 
    C. 或
    D.
    2.下列命题中假命题是( )
    A.正六边形的外角和等于 B.位似图形必定相似
    C.样本方差越大,数据波动越小 D.方程无实数根
    3.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
    A.①② B.①③ C.①③④ D.②③④
    4.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:

    2
    6
    7
    7
    8

    2
    3
    4
    8
    8
    关于以上数据,说法正确的是( )
    A.甲、乙的众数相同 B.甲、乙的中位数相同
    C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
    5.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=的图象上的两个点,则一次函数y=kx+b的图象经过(  )
    A.第一、二、三象限 B.第一、二、四象限
    C.第一、三、四象限 D.第二、三、四象限
    6.下列命题中错误的有(  )个
    (1)等腰三角形的两个底角相等 
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形 
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    7.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )

    A. B. C. D.4
    8.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    9.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    10.方程x2﹣3x=0的根是( )
    A.x=0 B.x=3 C., D.,
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
    12.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.

    13.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.

    14.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    15.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.

    16.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是   ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.

    18.(8分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)

    19.(8分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    21.(8分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    22.(10分)(1)观察猜想
    如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;
    (2)问题解决
    如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
    (3)拓展延伸
    如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.

    23.(12分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
    (1)求证:BC是∠ABE的平分线;
    (2)若DC=8,⊙O的半径OA=6,求CE的长.
    24.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
    若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:如图所示:

    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    2、C
    【解析】
    试题解析:A、正六边形的外角和等于360°,是真命题;
    B、位似图形必定相似,是真命题;
    C、样本方差越大,数据波动越小,是假命题;
    D、方程x2+x+1=0无实数根,是真命题;
    故选:C.
    考点:命题与定理.
    3、B
    【解析】
    结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
    【详解】
    解:①由图象可知,抛物线开口向下,所以①正确;
     ②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
     剩下的选项中都有③,所以③是正确的;
     易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
    故选:B.
    【点睛】
    本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
    4、D
    【解析】
    分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
    【详解】
    甲:数据7出现了2次,次数最多,所以众数为7,
    排序后最中间的数是7,所以中位数是7,

    =4.4,
    乙:数据8出现了2次,次数最多,所以众数为8,
    排序后最中间的数是4,所以中位数是4,

    =6.4,
    所以只有D选项正确,
    故选D.
    【点睛】
    本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.
    5、C
    【解析】
    把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即
    根据k、b的值确定一次函数y=kx+b的图象经过的象限.
    【详解】
    解:把(2,2)代入,
    得k=4,
    把(b,﹣1﹣n2)代入得:
    k=b(﹣1﹣n2),即,
    ∵k=4>0,<0,
    ∴一次函数y=kx+b的图象经过第一、三、四象限,
    故选C.
    【点睛】
    本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k,b的符号是解题关键.
    6、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    7、A
    【解析】
    试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
    若旋转角度为11°,则∠ACO=30°+11°=41°.
    ∴∠AOC=180°-∠ACO-∠CAO=90°.
    在等腰Rt△ABC中,AB=4,则AO=OC=2.
    在Rt△AOD1中,OD1=CD1-OC=3,
    由勾股定理得:AD1=.
    故选A.
    考点: 1.旋转;2.勾股定理.
    8、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质
    9、C
    【解析】
    根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
    【详解】
    解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选C.

    【点睛】
    本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
    10、D
    【解析】
    先将方程左边提公因式x,解方程即可得答案.
    【详解】
    x2﹣3x=0,
    x(x﹣3)=0,
    x1=0,x2=3,
    故选:D.
    【点睛】
    本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3.
    【解析】
    试题解析:把(-1,0)代入得:
    2-3+k-2=0,
    解得:k=3.
    故答案为3.
    12、1
    【解析】
    解:连接OC,
    ∵AB为⊙O的直径,AB⊥CD,
    ∴CE=DE=CD=×6=3,
    设⊙O的半径为xcm,
    则OC=xcm,OE=OB﹣BE=x﹣1,
    在Rt△OCE中,OC2=OE2+CE2,
    ∴x2=32+(x﹣1)2,
    解得:x=1,
    ∴⊙O的半径为1,
    故答案为1.

    【点睛】
    本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.
    13、1
    【解析】
    分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
    详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
    ∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
    ∴点A的坐标为(1,1), ∴k=1×1=1.

    点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
    14、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    15、-3
    【解析】

    设A(a, a+4),B(c, c+4),则
    解得: x+4=,即x2+4x−k=0,
    ∵直线y=x+4与双曲线y=相交于A、B两点,
    ∴a+c=−4,ac=-k,
    ∴(c−a)2=(c+a)2−4ac=16+4k,
    ∵AB=,
    ∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,
    2 (c−a)2=8,
    (c−a)2=4,
    ∴16+4k =4,
    解得:k=−3,
    故答案为−3.
    点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.
    16、1
    【解析】
    联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
    【详解】
    联立得:,
    ①×2+②,得:10x=20,
    解得:x=2,
    将x=2代入①,得:1-y=1,
    解得:y=0,
    则,
    将x=2、y=0代入,得:,
    解得:,
    则mn=1,
    故答案为1.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

    三、解答题(共8题,共72分)
    17、(1);(2).
    【解析】
    (1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
    (2)画出树状图,然后根据概率公式列式计算即可得解.
    【详解】
    (1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
    ∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
    (2)根据题意画出树状图如下:

    一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
    所以,P(抽出的两张卡片的图形是中心对称图形).
    【点睛】
    本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    18、AD=38.28米.
    【解析】
    过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.
    【详解】
    过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,
    由题意知,AD⊥CD
    ∴四边形BFDE为矩形
    ∴BF=ED
    在Rt△ABE中,AE=AB•cos∠EAB
    在Rt△BCF中,BF=BC•cos∠FBC
    ∴AD=AE+BF=20•cos60°+40•cos45°
    =20×+40×=10+20
    =10+20×1.414
    =38.28(米).
    即AD=38.28米.

    【点睛】
    解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    19、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    20、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    22、(1)BC=BD+CE,(2);(3).
    【解析】
    (1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;
    (2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;
    (3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出
    的值,根据勾股定理即可求出BD的长.
    【详解】
    解:(1)观察猜想
    结论: BC=BD+CE,理由是:
    如图①,∵∠B=90°,∠DAE=90°,
    ∴∠D+∠DAB=∠DAB+∠EAC=90°,
    ∴∠D=∠EAC,
    ∵∠B=∠C=90°,AD=AE,
    ∴△ADB≌△EAC,
    ∴BD=AC,EC=AB,
    ∴BC=AB+AC=BD+CE;
    (2)问题解决
    如图②,过D作DE⊥AB,交BA的延长线于E,

    由(1)同理得:△ABC≌△DEA,
    ∴DE=AB=2,AE=BC=4,
    Rt△BDE中,BE=6,
    由勾股定理得:
    (3)拓展延伸
    如图③,过D作DE⊥BC于E,作DF⊥AB于F,
    同理得:△CED≌△AFD,
    ∴CE=AF,ED=DF,
    设AF=x,DF=y,
    则,解得:
    ∴BF=2+1=3,DF=3,
    由勾股定理得:

    【点睛】
    考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.
    23、(1)证明见解析;(2)4.1.
    【解析】
    试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
    (2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
    试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
    (2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
    考点:切线的性质.
    24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.

    相关试卷

    2022-2023学年湖北省广水市中考数学专项突破模拟试题(一模二模)含解析: 这是一份2022-2023学年湖北省广水市中考数学专项突破模拟试题(一模二模)含解析,共59页。试卷主要包含了 如果,那么, 下列计算正确是,06秒,10, 点P关于x轴的对称点的坐标是等内容,欢迎下载使用。

    湖北省广水市达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份湖北省广水市达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列计算正确的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。

    湖北省广水市市马坪镇重点达标名校2022年中考五模数学试题含解析: 这是一份湖北省广水市市马坪镇重点达标名校2022年中考五模数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示,,结论,下列计算,结果等于a4的是,方程的解是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map