![湖北省武汉经济技术开发区第一初级中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13531899/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省武汉经济技术开发区第一初级中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13531899/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省武汉经济技术开发区第一初级中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13531899/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖北省武汉经济技术开发区第一初级中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析
展开
这是一份湖北省武汉经济技术开发区第一初级中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了定义,五名女生的体重,下列函数中,二次函数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是( )
A.4 B.5 C.10 D.11
2.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
3.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
A.③ B.①③ C.②④ D.①③④
4.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
A. B. C. D.
5.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
A.方有两个相等的实数根 B.方程有一根等于0
C.方程两根之和等于0 D.方程两根之积等于0
6.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
7.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
8.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是( )
A.2cm B.4cm C.6cm D.8cm
9.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为( )
A.100° B.105° C.110° D.115°
10.下列函数中,二次函数是( )
A.y=﹣4x+5 B.y=x(2x﹣3)
C.y=(x+4)2﹣x2 D.y=
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.
12.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
13.计算:______.
14.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
15.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.
16.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
三、解答题(共8题,共72分)
17.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
18.(8分)先化简,再求值:,其中x=-1.
19.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
20.(8分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
21.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
22.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.
23.(12分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:
本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?
24.小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:(4+x+3+30+33)÷3=7,
解得:x=3,
根据众数的定义可得这组数据的众数是3.
故选B.
考点:3.众数;3.算术平均数.
2、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、A
【解析】
设
(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
综上所述,四种说法中正确的是③.
故选A.
4、D
【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
5、C
【解析】
试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
∴1+(﹣1)=0,
即只有选项C正确;选项A、B、D都错误;
故选C.
6、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
7、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
8、C
【解析】
由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.
【详解】
∵∥
∴△ADE∽△ABC
∴
∵
∴AC=6cm
故选C.
考点:相似三角形的判定和性质
点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.
9、B
【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.
【详解】
∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.
【点睛】
本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.
10、B
【解析】
A. y=-4x+5是一次函数,故此选项错误;
B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;
C. y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;
D. y=是组合函数,故此选项错误.
故选B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.
【详解】
解:连接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
则在△DMG和△DNH中, ,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=.
则阴影部分的面积是:.
故答案为:.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
12、﹣2
【解析】
∵反比例函数的图象过点A(m,3),
∴,解得.
13、
【解析】
原式=
=.
故答案为:.
14、2.
【解析】
把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
【详解】
解:∵m是方程2x2﹣3x﹣2=0的一个根,
∴代入得:2m2﹣3m﹣2=0,
∴2m2﹣3m=2,
∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
故答案为:2.
【点睛】
本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
15、
【解析】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.
【详解】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.
∵四边形ADEF是菱形,
∴F,D关于直线AE对称,
∴PF=PD,
∴PF+PB=PA+PB,
∵PD+PB≥BD,
∴PF+PB的最小值是线段BD的长,
∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,
∵∠EGB=45°,EG⊥BG,
∴EG=BG=x,
∴x+x+x=3+,
∴x=2,
∴DH=1,BH=3,
∴BD==,
∴PF+PB的最小值为,
故答案为.
【点睛】
本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.
16、50.
【解析】
根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
【详解】
解:如图,米
,
设,则,
则,
解得,
故答案为:50.
【点睛】
本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
三、解答题(共8题,共72分)
17、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.
【解析】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
【详解】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,
由题意得:,
解得:,
则甲,乙两种型号设备每台的价格分别为12万元和10万元;
(2)设购买甲型设备台,乙型设备台,
则,
∴,
∵取非负整数,
∴,
∴有6种购买方案;
(3)由题意:,
∴,
∴为4或5,
当时,购买资金为:(万元),
当时,购买资金为:(万元),
则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.
18、解:原式=,.
【解析】
试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.
解:原式=.
当x=-1时,原式.
19、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
20、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【解析】
(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
【详解】
(1)设购进甲种商品x件,购进乙商品y件,
根据题意得:
,
解得:,
答:商店购进甲种商品40件,购进乙种商品60件;
(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
根据题意列得:
,
解得:20≤a≤22,
∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
【点睛】
此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
21、(1)5.6
(2)货物MNQP应挪走,理由见解析.
【解析】
(1)如图,作AD⊥BC于点D
Rt△ABD中,
AD=ABsin45°=4
在Rt△ACD中,∵∠ACD=30°
∴AC=2AD=4
即新传送带AC的长度约为5.6米.
(2)结论:货物MNQP应挪走.
在Rt△ABD中,BD=ABcos45°=4
在Rt△ACD中,CD=ACcos30°=
∴CB=CD—BD=
∵PC=PB—CB ≈4—2.1=1.9<2
∴货物MNQP应挪走.
22、(1)证明见解析;(2).
【解析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】
解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
23、(1)200,90 (2)图形见解析(3)750人
【解析】
试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.
试题解析:
(1)20÷10%=200,
200×(1-45%-10%)=90 ;
(2)90-25-10-5=50,
补全条形统计图
(3)=750(人)
答: 每天的骑行路程在2~4千米的大约750人
24、(1)y=0.8x﹣60(0≤x≤200)(2)159份
【解析】
解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).
(2)根据题意得:30(0.8x﹣60)≥2000,解得x≥.
∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.
(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.
(2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.
相关试卷
这是一份湖北省武汉市武珞路中学2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算 的结果是,下列图形中,主视图为①的是,已知,则的值为,﹣2×等内容,欢迎下载使用。
这是一份广西合浦县2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年湖北省广水市中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)