湖北省襄阳四中学2022年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
2.学完分式运算后,老师出了一道题“计算:”.
小明的做法:原式;
小亮的做法:原式;
小芳的做法:原式.
其中正确的是( )
A.小明 B.小亮 C.小芳 D.没有正确的
3.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为( )
A. B. C. D.
4.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
次序
第一次
第二次
第三次
第四次
第五次
甲命中的环数(环)
6
7
8
6
8
乙命中的环数(环)
5
10
7
6
7
根据以上数据,下列说法正确的是( )
A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
C.甲、乙成绩的众数相同 D.甲的成绩更稳定
5.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )
A.左、右两个几何体的主视图相同
B.左、右两个几何体的左视图相同
C.左、右两个几何体的俯视图不相同
D.左、右两个几何体的三视图不相同
6.已知一次函数且随的增大而增大,那么它的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值( )
A.总不小于1 B.总不小于11
C.可为任何实数 D.可能为负数
8.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为( )
A.6 B.8 C.14 D.16
9.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
10.计算a•a2的结果是( )
A.a B.a2 C.2a2 D.a3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:=_____.
12.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
13.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)
14.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.
15.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)
16.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
三、解答题(共8题,共72分)
17.(8分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
18.(8分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷2
19.(8分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:
20.(8分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(1)已知⊙O的半径为1.
①若=,求BC的长;
②当为何值时,AB•AC的值最大?
21.(8分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
22.(10分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.
(1)在点,,,中,抛物线的关联点是_____ ;
(2)如图2,在矩形ABCD中,点,点,
①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
23.(12分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
24.近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);
(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
2、C
【解析】
试题解析:
=
=
=
=
=1.
所以正确的应是小芳.
故选C.
3、D
【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
【详解】
由题意可得:,
故选D.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
4、D
【解析】
根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
【详解】
把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
∴甲、乙成绩的中位数相同,故选项B错误;
根据表格中数据可知,甲的众数是8环,乙的众数是7环,
∴甲、乙成绩的众数不同,故选项C错误;
甲命中的环数的平均数为:(环),
乙命中的环数的平均数为:(环),
∴甲的平均数等于乙的平均数,故选项A错误;
甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
因为2.8>0.8,
所以甲的稳定性大,故选项D正确.
故选D.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
5、B
【解析】
直接利用已知几何体分别得出三视图进而分析得出答案.
【详解】
A、左、右两个几何体的主视图为:
,
故此选项错误;
B、左、右两个几何体的左视图为:
,
故此选项正确;
C、左、右两个几何体的俯视图为:
,
故此选项错误;
D、由以上可得,此选项错误;
故选B.
【点睛】
此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.
6、B
【解析】
根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
【详解】
解:∵一次函数y=kx-3且y随x的增大而增大,
∴它的图象经过一、三、四象限,
∴不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.
7、A
【解析】
利用配方法,根据非负数的性质即可解决问题;
【详解】
解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,
又∵(x+3)2≥0,(2y-1)2≥0,
∴x2+4y2+6x-4y+11≥1,
故选:A.
【点睛】
本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.
8、C
【解析】
根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
【详解】
∵一元二次方程x2-2x-5=0的两根是x1、x2,
∴x1+x2=2,x1•x2=-5,
∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
故选C.
【点睛】
考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
9、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
10、D
【解析】
a·a2= a3.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
12、-9.
【解析】
根据题中给出的运算法则按照顺序求解即可.
【详解】
解:根据题意,得:,.
故答案为:-9.
【点睛】
本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
13、πcm1.
【解析】
求出AD,先分别求出两个扇形的面积,再求出答案即可.
【详解】
解:∵AB长为15cm,贴纸部分的宽BD为15cm,
∴AD=10cm,
∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=(cm1),
故答案为πcm1.
【点睛】
本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.
14、1
【解析】
试题解析:如图,
∵菱形ABCD中,BD=8,AB=5,
∴AC⊥BD,OB=BD=4,
∴OA==3,
∴AC=2OA=6,
∴这个菱形的面积为:AC•BD=×6×8=1.
15、60
【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
【详解】
∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
∴+=100, 解得,AD≈60
考点:解直角三角形的应用.
16、1
【解析】
利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
【详解】
a2+b2﹣8a﹣4b+20=0,
a2﹣8a+16+b2﹣4b+4=0,
(a﹣4)2+(b﹣2)2=0
a﹣4=0,b﹣2=0,
a=4,b=2,
则a2﹣b2=16﹣4=1,
故答案为1.
【点睛】
本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
三、解答题(共8题,共72分)
17、﹣1.
【解析】
本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式
=1﹣3+4﹣3,
=﹣1.
【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
18、
【解析】
按照实数的运算顺序进行运算即可.
【详解】
解:原式
【点睛】
本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.
19、建筑物的高度为.建筑物的高度为.
【解析】
分析:过点D作DE⊥AB于于E,则DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解决问题.
详解:过点D作DE⊥AB于于E,则DE=BC=60m,
在Rt△ABC中,tan53°==,∴AB=80(m).
在Rt△ADE中,tan37°==,∴AE=45(m),
∴BE=CD=AB﹣AE=35(m).
答:两座建筑物的高度分别为80m和35m.
点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(1)设AB=5k、AC=1k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=1k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=1﹣k,
在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=16﹣4d2,
AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当d=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
21、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
22、 (1) (2)① ②
【解析】
【分析】(1)根据关联点的定义逐一进行判断即可得;
(2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
②由①知,分两种情况画出图形进行讨论即可得.
【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
故答案为;
(2)①当时,,,,,
此时矩形上的所有点都在抛物线的下方,
∴,
∴,
∵,
∴;
②由①,,
如图2所示时,CF最长,当CF=4时,即=4,解得:t=,
如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,
故答案为
【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
23、120
【解析】
设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
【详解】
解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
由题意得,×2=,
解得:x=120,
经检验:x=120是原分式方程的解,且符合题意.
答:第一批水果每件进价为120元.
【点睛】
本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
24、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;
(4).
【解析】
(1)认真读题,找到题目中的相关信息量,列表统计即可;
(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;
(3)根据图表信息写出一个符合条件的信息即可;
(4)利用树状图确定求解概率.
【详解】
(1)统计表如下:
2017年新能源汽车各类型车型销量情况(单位:万辆)
类型
纯电动
混合动力
总计
新能源乘用车
46.8
11.1
57.9
新能源商用车
18.4
1.4
19.8
(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,
纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,
补全图形如下:
(3)总销量越高,其个人购买量越大.
(4)画树状图如下:
∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,
∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.
【点睛】
此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.
2022年湖北省襄阳市宜城市重点中学中考数学猜题卷含解析: 这是一份2022年湖北省襄阳市宜城市重点中学中考数学猜题卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列命题正确的是,下面运算正确的是等内容,欢迎下载使用。
2022届湖北省武汉二中学中考数学猜题卷含解析: 这是一份2022届湖北省武汉二中学中考数学猜题卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022届湖北省天门天宜国际校中考数学猜题卷含解析: 这是一份2022届湖北省天门天宜国际校中考数学猜题卷含解析,共20页。试卷主要包含了下列计算正确的是,若点P等内容,欢迎下载使用。