![湖南省岳阳汨罗市弼时片达标名校2021-2022学年中考数学全真模拟试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13531637/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省岳阳汨罗市弼时片达标名校2021-2022学年中考数学全真模拟试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13531637/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省岳阳汨罗市弼时片达标名校2021-2022学年中考数学全真模拟试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13531637/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省岳阳汨罗市弼时片达标名校2021-2022学年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.函数与在同一坐标系中的大致图象是( )
A、 B、 C、 D、
2.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )
A. B.15 C. D.9
3.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是( )
A.a< B.a> C.a<﹣ D.a>﹣
4.下列命题中假命题是( )
A.正六边形的外角和等于 B.位似图形必定相似
C.样本方差越大,数据波动越小 D.方程无实数根
5.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为( )
A.1 B.2 C.3 D.4
6.下列说法正确的是( )
A.对角线相等且互相垂直的四边形是菱形
B.对角线互相平分的四边形是正方形
C.对角线互相垂直的四边形是平行四边形
D.对角线相等且互相平分的四边形是矩形
7.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
8.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )
A. B.
C. D.
9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
10.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.
12.分解因式:9x3﹣18x2+9x= .
13.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
14.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.
15.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.
16.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.
17.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
(1)如图1,猜想∠QEP= °;
(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.
19.(5分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
20
21
19
16
27
18
31
29
21
22
25
20
19
22
35
33
19
17
18
29
18
35
22
15
18
18
31
31
19
22
整理上面数据,得到条形统计图:
样本数据的平均数、众数、中位数如下表所示:
统计量
平均数
众数
中位数
数值
23
m
21
根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
20.(8分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
21.(10分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是_____度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
22.(10分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).
(1)求该抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.
23.(12分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
24.(14分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:
(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D.
【解析】
试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
故选D.
考点:一次函数和反比例函数的图象.
2、C
【解析】
由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.
【详解】
由折叠得到EB=EF,∠B=∠DFE,
在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,
根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,
解得:x=5,
∴EF=EB=5,CE=4,
∵FD∥BC,
∴∠DFE=∠FEC,
∴∠FEC=∠B,
∴EF∥AB,
∴,
则AB===,
故选C.
【点睛】
此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.
3、D
【解析】
先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.
【详解】
解方程3x+2a=x﹣5得
x=,
因为方程的解为负数,
所以<0,
解得:a>﹣.
【点睛】
本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.
4、C
【解析】
试题解析:A、正六边形的外角和等于360°,是真命题;
B、位似图形必定相似,是真命题;
C、样本方差越大,数据波动越小,是假命题;
D、方程x2+x+1=0无实数根,是真命题;
故选:C.
考点:命题与定理.
5、C
【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
【详解】
去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
方程①的根的情况有两种:
(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
解得a=.
当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
(i)当x=1时,代入①式得3﹣a=1,即a=3.
当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
x1是增根,故x=﹣为方程的唯一实根;
因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
故选C.
【点睛】
考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
6、D
【解析】
分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.
详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
B、四条边相等的四边形是菱形,故错误;
C、对角线相互平分的四边形是平行四边形,故错误;
D、对角线相等且相互平分的四边形是矩形,正确;
故选D.
点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.
7、B
【解析】
根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
【详解】
解:A、5ab﹣=4ab,此选项运算错误,
B、a6÷a2=a4,此选项运算正确,
C、,选项运算错误,
D、(a2b)3=a6b3,此选项运算错误,
故选B.
【点睛】
此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
8、B
【解析】
∵在正方形ABCD中, AB=,
∴AC=4,AD=DC=,∠DAP=∠DCA=45o,
当点Q在AD上时,PA=PQ,
∴DP=AP=x,
∴S= ;
当点Q在DC上时,PC=PQ
CP=4-x,
∴S=;
所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,
故选B.
【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.
9、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
10、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
【详解】
解:根据题意得2π×PA=3×2π×1,
所以PA=3,
所以圆锥的高OP=
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
12、9x
【解析】
试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.
考点:因式分解
13、。
【解析】
试题分析:如图,连接EG,
∵,∴设,则。
∵点E是边CD的中点,∴。
∵△ADE沿AE折叠后得到△AFE,
∴。
易证△EFG≌△ECG(HL),∴。∴。
∴在Rt△ABG中,由勾股定理得: ,即。
∴。
∴(只取正值)。
∴。
14、240.
【解析】
试题分析:∠1+∠2=180°+60°=240°.
考点:1.三角形的外角性质;2.三角形内角和定理.
15、
【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.
【详解】
抬头看信号灯时,是绿灯的概率为.
故答案为:.
【点睛】
此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.
16、1
【解析】
原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,
即x2−2x+1=−+1,所以(x−1)2= .
故答案为:1,.
17、
【解析】
试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.
考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.
三、解答题(共7小题,满分69分)
18、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
【详解】
解:(1)∠QEP=60°;
证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
则在△CPA和△CQB中,
,
∴△CQB≌△CPA(SAS),
∴∠CQB=∠CPA,
又因为△PEM和△CQM中,∠EMP=∠CMQ,
∴∠QEP=∠QCP=60°.
故答案为60;
(2)∠QEP=60°.以∠DAC是锐角为例.
证明:如图2,∵△ABC是等边三角形,
∴AC=BC,∠ACB=60°,
∵线段CP绕点C顺时针旋转60°得到线段CQ,
∴CP=CQ,∠PCQ=60°,
∴∠ACB+∠BCP=∠BCP+∠PCQ,
即∠ACP=∠BCQ,
在△ACP和△BCQ中,
,
∴△ACP≌△BCQ(SAS),
∴∠APC=∠Q,
∵∠1=∠2,
∴∠QEP=∠PCQ=60°;
(3)连结CQ,作CH⊥AD于H,如图3,
与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
∵∠DAC=135°,∠ACP=15°,
∴∠APC=30°,∠CAH=45°,
∴△ACH为等腰直角三角形,
∴AH=CH=AC=×4=,
在Rt△PHC中,PH=CH=,
∴PA=PH−AH=-,
∴BQ=−.
【点睛】
本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
19、 (1)18;(2)中位数;(3)100名.
【解析】
【分析】(1)根据条形统计图中的数据可以得到m的值;
(2)根据题意可知应选择中位数比较合适;
(3)根据统计图中的数据可以计该部门生产能手的人数.
【详解】(1)由图可得,
众数m的值为18,
故答案为:18;
(2)由题意可得,
如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
故答案为:中位数;
(3)300×=100(名),
答:该部门生产能手有100名工人.
【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
20、(1)证明见解析;(2)1.
【解析】
试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
(2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.
考点:切线的判定;切割线定理.
21、(1)117;(2)答案见图;(3)B;(4)30.
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为:117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为:B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
22、 (1) y=﹣x2+2x+3;(2)见解析.
【解析】
(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;
(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.
【详解】
解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),
∴,得,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,
理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),
∴抛物线的对称轴为直线x=1,
∴点A的坐标为(﹣1,0),
设点Q的坐标为(1,t),则
AC2=OC2+OA2=32+12=10,
AQ2=22+t2=4+t2,
CQ2=12+(3﹣t)2=t2﹣6t+10,
当AC为斜边时,
10=4+t2+t2﹣6t+10,
解得,t1=1或t2=2,
∴点Q的坐标为(1,1)或(1,2),
当AQ为斜边时,
4+t2=10+t2﹣6t+10,
解得,t=,
∴点Q的坐标为(1,),
当CQ时斜边时,
t2﹣6t+10=4+t2+10,
解得,t=,
∴点Q的坐标为(1,﹣),
由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.
【点睛】
本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.
23、(1)见解析;(2)⊙O直径的长是4.
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
【详解】
证明:(1)连接BD,交AC于F,
∵DC⊥BE,
∴∠BCD=∠DCE=90°,
∴BD是⊙O的直径,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵弧BC=弧BC,
∴∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴BD⊥DE,
∴DE是⊙O切线;
解:(2)∵AC∥DE,BD⊥DE,
∴BD⊥AC.
∵BD是⊙O直径,
∴AF=CF,
∴AB=BC=8,
∵BD⊥DE,DC⊥BE,
∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
∴△BDC∽△BED,
∴=,
∴BD2=BC•BE=8×10=80,
∴BD=4.
即⊙O直径的长是4.
【点睛】
此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
24、(1)30;;(2).
【解析】
试题分析:(1)根据题意列式求值,根据相应数据画图即可;
(2)根据题意列表,然后根据表中数据求出概率即可.
解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,
答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;
故答案为30,144°;
补全统计图如图所示:
(2)根据题意列表如下:
设竖列为小红抽取的跑道,横排为小花抽取的跑道,
记小红和小花抽在相邻两道这个事件为A,
∴.
考点:列表法与树状图法;扇形统计图;利用频率估计概率.
湖南省岳阳汨罗市弼时片2023-2024学年数学八上期末教学质量检测模拟试题含答案: 这是一份湖南省岳阳汨罗市弼时片2023-2024学年数学八上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列坐标点在第四象限内的是等内容,欢迎下载使用。
2022年湖南省岳阳汨罗市弼时片达标名校中考数学考前最后一卷含解析: 这是一份2022年湖南省岳阳汨罗市弼时片达标名校中考数学考前最后一卷含解析,共19页。试卷主要包含了方程的解是,若点A等内容,欢迎下载使用。
2021-2022学年湖南省岳阳市汨罗市弼时片区中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年湖南省岳阳市汨罗市弼时片区中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,若a与﹣3互为倒数,则a=,下列运算正确的是等内容,欢迎下载使用。