|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南望城金海校2022年中考数学模拟试题含解析
    立即下载
    加入资料篮
    湖南望城金海校2022年中考数学模拟试题含解析01
    湖南望城金海校2022年中考数学模拟试题含解析02
    湖南望城金海校2022年中考数学模拟试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南望城金海校2022年中考数学模拟试题含解析

    展开
    这是一份湖南望城金海校2022年中考数学模拟试题含解析,共23页。试卷主要包含了是两个连续整数,若,则分别是.等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
    A. B.
    C. D.
    2.下面几何的主视图是( )

    A. B. C. D.
    3.一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是( )
    A.180° B.150° C.120° D.90°
    4.是两个连续整数,若,则分别是( ).
    A.2,3 B.3,2 C.3,4 D.6,8
    5.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需(  )
    A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
    6.将不等式组的解集在数轴上表示,下列表示中正确的是( )
    A. B. C. D.
    7.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(  )
    ①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)

    A.1个 B.2个 C.3个 D.4个
    8.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=(  )

    A.23° B.46° C.67° D.78°
    9.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).

    A. B. C. D.
    10.若关于x的不等式组无解,则a的取值范围是(  )
    A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
    11.式子有意义的x的取值范围是( )
    A.且x≠1 B.x≠1 C. D.且x≠1
    12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
    ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
    其中正确的是( )

    A.①②③ B.①③④ C.①③⑤ D.②④⑤
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
    14.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
    15.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )

    A. B. C. D.
    16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.
    17.已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为________.
    18.在函数y=的表达式中,自变量x的取值范围是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    20.(6分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积

    21.(6分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.

    22.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
    (Ⅰ)若∠ABC=29°,求∠D的大小;
    (Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
    ①BE的长;
    ②四边形ABCD的面积.

    23.(8分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.
    24.(10分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.

    25.(10分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?

    26.(12分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.

    (1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
    (2)若OA=3BC,求k的值.
    27.(12分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.

    (1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
    (2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据第二象限中点的特征可得: ,
    解得: .
    在数轴上表示为:
    故选B.
    考点:(1)、不等式组;(2)、第一象限中点的特征
    2、B
    【解析】
    主视图是从物体正面看所得到的图形.
    【详解】
    解:从几何体正面看
    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    3、B
    【解析】
    解:,解得n=150°.故选B.
    考点:弧长的计算.
    4、A
    【解析】
    根据,可得答案.
    【详解】
    根据题意,可知,可得a=2,b=1.
    故选A.
    【点睛】
    本题考查了估算无理数的大小,明确是解题关键.
    5、C
    【解析】
    用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
    【详解】
    买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
    共用去:(2a+3b)元.
    故选C.
    【点睛】
    本题主要考查列代数式,总价=单价乘数量.
    6、B
    【解析】
    先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.
    解:不等式可化为:,即.
    ∴在数轴上可表示为.故选B.
    “点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    7、C
    【解析】
    ①如图,由平行线等分线段定理(或分线段成比例定理)易得:;
    ②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;
    ③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.
    【详解】
    解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,
    ∴,
    故 ①正确;
    ②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,
    ∵DE=1,OA'=1,
    ∴S△AED=×1×1=,

    ∵OE∥AA'∥GB',OA'=A'B',
    ∴AE=AG,
    ∴△AED∽△AGB且相似比=1,
    ∴△AED≌△AGB,
    ∴S△ABG=,
    同理得:G为AC中点,
    ∴S△ABG=S△BCG=,
    ∴S△ABC=1,
    故 ②正确;
    ③由②知:△AED≌△AGB,
    ∴BG=DE=1,
    ∵BG∥EF,
    ∴△BGC∽△FEC,
    ∴,
    ∴EF=1.即OF=5,
    故③正确;
    ④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,
    故④错误;
    故选C.
    【点睛】
    本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.
    8、B
    【解析】
    根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
    【详解】

    根据题意得:AB=AC,
    ∴∠ACB=∠ABC=67°,
    ∵直线l1∥l2,
    ∴∠2=∠ABC=67°,
    ∵∠1+∠ACB+∠2=180°,
    ∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
    故选B.
    【点睛】
    本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
    9、B
    【解析】
    如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
    【详解】
    如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B

    【点睛】
    本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
    10、A
    【解析】
    【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
    【详解】∵不等式组无解,
    ∴a﹣4≥3a+2,
    解得:a≤﹣3,
    故选A.
    【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
    11、A
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.
    12、C
    【解析】
    试题解析:∵抛物线的顶点坐标A(1,3),
    ∴抛物线的对称轴为直线x=-=1,
    ∴2a+b=0,所以①正确;
    ∵抛物线开口向下,
    ∴a<0,
    ∴b=-2a>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以②错误;
    ∵抛物线的顶点坐标A(1,3),
    ∴x=1时,二次函数有最大值,
    ∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
    ∵抛物线与x轴的一个交点为(4,0)
    而抛物线的对称轴为直线x=1,
    ∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
    ∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
    ∴当1<x<4时,y2<y1,所以⑤正确.
    故选C.
    考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、6y2-5y+2=0
    【解析】
    根据y=,将方程变形即可.
    【详解】
    根据题意得:3y+,
    得到6y2-5y+2=0
    故答案为6y2-5y+2=0
    【点睛】
    此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
    14、0 【解析】
    【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
    【详解】把点(12,﹣5)代入直线y=kx得,
    ﹣5=12k,
    ∴k=﹣;
    由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
    设直线l与x轴、y轴分别交于点A、B,(如图所示)
    当x=0时,y=m;当y=0时,x=m,
    ∴A(m,0),B(0,m),
    即OA=m,OB=m,
    在Rt△OAB中,AB=,
    过点O作OD⊥AB于D,
    ∵S△ABO=OD•AB=OA•OB,
    ∴OD•=×m×m,
    ∵m>0,解得OD=m,
    由直线与圆的位置关系可知m <6,解得m<,
    故答案为0
    【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
    15、C.
    【解析】
    分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.
    解答:解:当动点P在OC上运动时,∠APB逐渐减小;
    当P在上运动时,∠APB不变;
    当P在DO上运动时,∠APB逐渐增大.
    故选C.
    16、.
    【解析】
    根据题意,画出树状图,然后根据树状图和概率公式求概率即可.
    【详解】
    解:画树状图得:

    共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,
    至少有一辆汽车向左转的概率是:.
    故答案为:.
    【点睛】
    此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.
    17、-10
    【解析】
    根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.
    【详解】
    ∵关于x的一元二次方程的两个实数根分别为x =-2,x =4,
    ∴−2+4=−m,−2×4=n,
    解得:m=−2,n=−8,
    ∴m+n=−10,
    故答案为:-10
    【点睛】
    此题考查根与系数的关系,掌握运算法则是解题关键
    18、x≥1.
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    根据题意得,x﹣1≥0,
    解得x≥1.
    故答案为x≥1.
    【点睛】
    本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、200名;见解析;;(4)375.
    【解析】
    根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
    根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
    根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
    根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
    【详解】
    解:,
    答:此次抽样调查中,共调查了200名学生;
    反对的人数为:,
    补全的条形统计图如右图所示;
    扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
    (4),
    答:该校1500名学生中有375名学生持“无所谓”意见.
    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    20、(1),N(3,6);(2)y=-x+2,S△OMN=3.
    【解析】
    (1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
    (2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
    【详解】
    解:(1)∵点M是AB边的中点,∴M(6,3).
    ∵反比例函数y=经过点M,∴3=.∴k=1.
    ∴反比例函数的解析式为y=.
    当y=6时,x=3,∴N(3,6).
    (2)由题意,知M(6,2),N(2,6).
    设直线MN的解析式为y=ax+b,则

    解得,
    ∴直线MN的解析式为y=-x+2.
    ∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
    【点睛】
    本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
    21、(1)证明见解析;(2)
    【解析】
    (1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;
    (2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.
    【详解】
    (1)连接BD,

    ∵AB为⊙O的直径,∴BD⊥AC,
    ∵D是AC的中点,∴BC=AB,
    ∴∠C=∠A=45°,
    ∴∠ABC=90°,
    ∴BC是⊙O的切线;
    (2)连接OD,由(1)可得∠AOD=90°,
    ∵⊙O的半径为2, F为OA的中点,
    ∴OF=1, BF=3,,
    ∴,
    ∵,
    ∴∠E=∠A,
    ∵∠AFD=∠EFB,
    ∴△AFD∽△EFB,
    ∴,即,
    ∴.
    【点睛】
    本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.
    22、(1)∠D=32°;(2)①BE=;②
    【解析】
    (Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
    (Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
    根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
    ②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
    【详解】
    (Ⅰ)连接OC,
    ∵CD为切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∵∠AOC=2∠ABC=29°×2=58°,
    ∴∠D=90°﹣58°=32°;
    (Ⅱ)①连接OB,
    在Rt△OCD中,∵∠D=30°,
    ∴∠DOC=60°,
    ∵∠BAO=15°,
    ∴∠OBA=15°,
    ∴∠AOB=150°,
    ∴∠OBC=150°﹣60°=90°,
    ∴△OBC为等腰直角三角形,


    在Rt△CBE中,

    ②作BH⊥OA于H,如图,
    ∵∠BOH=180°﹣∠AOB=30°,

    ∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB


    【点睛】
    考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
    23、1
    【解析】
    先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.
    【详解】
    原式=a6﹣a6+a6=a6,
    当a=﹣1时,原式=1.
    【点睛】
    本题主要考查同底数幂的乘除以及幂的乘方运算法则.
    24、 (1)见解析;(2).
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
    (2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
    【详解】
    解:(1)连接OC,

    ∵OC=OB,
    ∴∠OCB=∠B,
    ∵∠B=∠F,
    ∴∠OCB=∠F,
    ∵D为BC的中点,
    ∴OF⊥BC,
    ∴∠F+∠FCD=90°,
    ∴∠OCB+∠FCD=90°,
    ∴∠OCF=90°,
    ∴CF为⊙O的切线;
    (2)过D作DH⊥AB于H,
    ∵AO=OB,CD=DB,
    ∴OD=AC,
    ∵四边形ACFD是平行四边形,
    ∴DF=AC,
    设OD=x,
    ∴AC=DF=2x,
    ∵∠OCF=90°,CD⊥OF,
    ∴CD2=OD•DF=2x2,
    ∴CD=x,
    ∴BD=x,
    ∴AD=x,
    ∵OD=x,BD=x,
    ∴OB=x,
    ∴DH=x,
    ∴sin∠BAD==.
    【点睛】
    本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
    25、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
    【解析】
    试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
    (2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
    试题解析:(1)∵OB=3OA=1,
    ∴B对应的数是1.
    (2)设经过x秒,点M、点N分别到原点O的距离相等,
    此时点M对应的数为3x-2,点N对应的数为2x.
    ①点M、点N在点O两侧,则
    2-3x=2x,
    解得x=2;
    ②点M、点N重合,则,
    3x-2=2x,
    解得x=2.
    所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
    26、(1)k=b2+4b;(2).
    【解析】
    试题分析:(1)分别求出点B的坐标,即可解答.
    (2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x
    试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,
    ∴平移后直线的解析式为y=+4,
    ∵点B在直线y=+4上,
    ∴B(b,b+4),
    ∵点B在双曲线y=上,
    ∴B(b,),
    令b+4=

    (2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),
    ∵OA=3BC,BC∥OA,CF∥x轴,
    ∴CF=OD,
    ∵点A、B在双曲线y=上,
    ∴3b•b=,解得b=1,
    ∴k=3×1××1=.

    考点:反比例函数综合题.
    27、(1),;(2),1,1.
    【解析】
    (1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;
    (2)由题意可得,由(1)可得点的坐标为, 表达出△OMP的面积即可,利用二次函数的性质求出最大值.
    【详解】
    解:(1)∵OA=6,OC=4, 四边形OABC为矩形,
    ∴AB=OC=4,
    ∴点B,
    设直线OB解析式为,将B代入得,解得,
    ∴,
    故答案为:;
    (2)由题可知,,

    由(1)可知,点的坐标为




    ∴当时,有最大值1.
    【点睛】
    本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.

    相关试卷

    湖南望城金海学校2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份湖南望城金海学校2023-2024学年九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果双曲线y=经过点,2020的相反数是等内容,欢迎下载使用。

    2023-2024学年湖南望城金海学校八上数学期末经典模拟试题含答案: 这是一份2023-2024学年湖南望城金海学校八上数学期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,64的立方根是,下列四个分式方程中无解的是等内容,欢迎下载使用。

    湖南望城金海学校2022-2023学年七下数学期末综合测试试题含答案: 这是一份湖南望城金海学校2022-2023学年七下数学期末综合测试试题含答案,共6页。试卷主要包含了计算,若点P,下列命题中的真命题是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map